Előzetes tudás

Ehhez a tanegységhez ismerned kell a gyökvonás műveletét.

Tanulási célok

Ebből a tanegységből megtudod, hogy mi az a számtani és mértani közép, valamint hogy milyen összefüggés van a tanult két középérték között.

Narráció szövege

Ahogy közeledik az iskolában a félév vagy az év vége, egyre többször fordul elő, hogy az addig megszerzett osztályzataid alapján megpróbálod előre kiszámítani, hányast kapsz. Mit teszel, ha a matekjegyedet szeretnéd előre jelezni? Összeadod az addig megszerzett osztályzataidat, majd a kapott összeget elosztod az osztályzataid számával. Ha mondjuk 4,25-ot (ejtsd: 4 egész 25 századot) kapsz eredményül, akkor azt mondod, hogy az osztályzataid átlaga 4,25, és jó esélyed van arra, hogy négyes legyél. Az átlag szó helyett a matematikában a számtani közép elnevezést is használjuk. A matematika másfajta középértékekkel is dolgozik. Két szám bármelyik középértékére jellemző, hogy a két szám közé esik, ha a két szám különböző. Azonos számok esetén a középérték az adott számmal egyenlő.
Lássunk egy példát! Keressünk olyan számot, amely annyival nagyobb a 2-nél, mint amennyivel kisebb a 8-nál! Jelöljük ezt x-szel! A feladat az $x - 2 = 8 - x$ (ejtsd: x mínusz 2 egyenlő 8 mínusz x) egyenlettel írható le. Rendezés után az x-re 5-öt kapunk. Ha az előző feladatban a 2 és a 8 helyére a-t és b-t írunk, akkor x-re az $\frac{{a + b}}{2}$ (ejtsd: a plusz b per 2) kifejezést kapjuk. Ezt a számot számtani vagy aritmetikai középnek nevezzük. Két nemnegatív szám számtani közepe a két szám összegének fele. Jele: A. (ejtsd: nagy a) Bár a definíciót csupán két nemnegatív számra fogalmaztuk meg, tetszőleges számú valós szám esetén is képezhetjük ezek számtani közepét: a számok összegét elosztjuk annyival, ahány számot összeadtunk.
Egy másik középérték megismeréséhez válasszuk megint a 2 és a 8 számpárt! Keressünk egy olyan számot közöttük, amely a 2-nek annyiszorosa, mint ahányad része a 8-nak! Jelöljük a keresett számot megint x-szel, és alakítsuk egyenletté a feladat szövegét! Ezek egyenlőségéből rendezés után x-re egy hiányos másodfokú egyenletet kapunk, melynek megoldásai a 4 és a –4. Mivel 2 és 8 közötti számot keresünk, csak a 4 a feladat megoldása. Ez valóban a 2 kétszerese és a 8 egyketted része.
Ha az előző példában a 2 és a 8 helyére a-t és b-t írunk, akkor x-re a $\sqrt {a \cdot b} $ (ejtsd: gyök alatt a-szor b) kifejezést kapjuk. Az így számolt közepet mértani vagy geometriai középnek nevezzük. Két nemnegatív szám mértani közepe alatt a két szám szorzatának négyzetgyökét értjük, és G-vel (ejtsd: nagy g-vel) jelöljük. Definiálhatjuk tetszőleges számú nemnegatív szám mértani közepét is. Ekkor a számok szorzatának vesszük annyiadik gyökét, ahány számot összeszoroztunk.
A 2 és a 8 kétféle közepét kétféleképpen számítottuk ki, és eltérő eredményre is jutottunk. Hogy jobban érzékelhessük a különbséget, számoljuk ki a számtani és mértani közepeket az 1; 9, a 2; 8, a 3; 7 és a 4; 6 számpárok esetén. A számtani középre mind a négy esetben 5-öt kapunk, a mértani közepek viszont különböznek egymástól. Megfigyelhetjük, hogy a számtani és a mértani közép valóban középen van – azaz a kisebbik számnál nagyobb, a nagyobbik számnál pedig kisebb. Sőt, azt is megfigyelhetjük, hogy minden számpár esetén a számtani közép bizonyult nagyobbnak. Vajon ez a véletlen műve, vagy mindig igaz?
Könnyen bizonyítható, hogy két nemnegatív szám esetén a számtani közép mindig nagyobb vagy egyenlő, mint a mértani közép. Ezt a tételt szokás a számtani és mértani közép közötti egyenlőtlenségnek is nevezni. Mikor áll fenn az egyenlőség? Az előző példában jól látszott, hogy ahogy a számpárok különbsége csökkent, a mértani közép egyre nagyobb lett, közelített a számtani középhez. Belátható, hogy pontosan akkor egyezik meg egymással két szám számtani és mértani közepe, amikor a két szám egyenlő.
Nézzünk még egy példát! Két szám mértani közepe 12, a kisebbik szám 8. Számítsuk ki a nagyobb számot és a számtani közepüket! Jelöljük x-szel a nagyobb számot, és írjuk fel a mértani közép definícióját! A kapott négyzetgyökös egyenletben az x nem lehet negatív. Mivel az egyenlet mindkét oldala nemnegatív, a négyzetre emelés ekvivalens átalakítás. Az egyenlet megoldása a 18. Ez nagyobb, mint 8, és a mértani közepük 12, tehát ez a keresett szám. A két számot összeadva, majd kettővel osztva a számtani közepükre 13 adódik.

Ajánlott irodalom

Sokszínű matematika 10, Mozaik Kiadó, 94. oldal

Matematika 10. osztály, Maxim Könyvkiadó, 50. oldal

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision