Előzetes tudás

Ehhez a tanegységhez ismerned kell az elsőfokú egyenlet rendezésének lépéseit, a hatványozás és a gyökvonás legfontosabb azonosságait, valamint tudnod kell ábrázolni a másodfokú függvényt. Ismerned kell a nevezetes azonosságokat, tudnod kell egy másodfokú kifejezést teljes négyzetté alakítani.

Tanulási célok

Ebből a tanegységből megismerheted a másodfokú egyenletek megoldásának többféle módszerét, a szorzattá alakítást, a teljes négyzetté alakítást, az ábrázolásos módszert, illetve az általános megoldóképletet.

Narráció szövege

Egyenletekkel már általános iskolában is találkozhattál, megtanultad az elsőfokú egyenletek megoldásának lépéseit, az egyenletátrendezés módszerét. Ebben a videóban a másodfokú egyenletekkel ismerkedhetsz meg. Ilyen egyenleteket már az ókor nagy matematikusai is meg tudtak oldani, bár ma sem tudjuk, hogy a pontos megoldóképlet kitől származik.
Milyen egyenletet nevezünk másodfokúnak? Általános alakja az a-szor x négyzet meg b-szer x meg c egyenlő nulla, ahol a, b és c valós számok, és a nem egyenlő nulla. Hiszen ha az a értéke nulla lenne, nem lenne másodfokú tagunk. Az egyenletben az ismeretlent jelöltük x-szel, ezt kell kiszámolnunk.
Most pedig próbáljuk megoldani az egyenleteket többféleképpen is! Kezdjük egy olyan feladattal, amelyet geometriából ismerhetsz. Mekkora a négyzet oldala, ha területe tizenhat négyzetméter? Melyik az a pozitív valós szám, amelynek négyzete 16? Az egyenletünk tehát x négyzet egyenlő 16. Talán ránézésre is tudod, hogy két szám, a plusz és a mínusz négy teszi igazzá az egyenletet. Hiszen ha visszahelyettesítjük a négyet vagy a mínusz négyet, majd négyzetre emeljük, tizenhatot kapunk. Persze a négyzet oldala csak pozitív szám lehet. Van más ötleted a megoldásra? Bizony, szorzattá is lehetne alakítani az egyenletet. Ehhez előbb rendezzük nullára, majd alkalmazzunk nevezetes azonosságot: „a négyzet mínusz b négyzet egyenlő a mínusz b-szer a plusz b”. Tudjuk, hogy szorzat csak akkor lehet nulla, ha legalább az egyik tényezője nulla, ezért vagy az x mínusz négy, vagy az x plusz négy lesz nulla. Így megkaptuk a gyököket. Esetleg próbálkozhatsz függvényábrázolással is. A másodfokú függvény képe parabola. Ehhez megint redukáljuk nullára az egyenletet! Vajon hol lesz a függvény értéke nulla?, vagyis hol metszi az x tengelyt? Az x négyzet-függvény transzformáltjáról van szó, amelyet 16 egységgel toltunk el az y tengellyel párhuzamosan negatív irányban. Pontosan mínusz és plusz négynél lesz a függvény zérushelye.
Ha a másodfokú egyenletből hiányzik tag, persze nem a négyzetes, azaz b és c is lehet nulla, akkor alkalmazhatjuk a szorzattá alakítás módszerét. Az ilyen egyenleteket nevezzük hiányos vagy tiszta másodfokú egyenleteknek.
Nézd csak: Az első egyenletben nincsen x-es tag, tehát b egyenlő nulla, így nevezetes azonossággal alakíthatunk szorzattá. A második esetben konstans nincs, azaz c egyenlő nulla. Ekkor kiemeléssel alakítunk szorzattá.
Mit tegyél, ha egyetlen tag sem hiányzik? Mik lesznek az együtthatók? Az a értéke kettő, b értéke négy és c értéke mínusz hat. Próbáljuk meg szorzattá alakítani az egyenlet bal oldalát! Kiemelünk kettőt. Teljes négyzetté alakítunk. Összevonunk a zárójelen belül, majd jöhet a nevezetes azonosság! Ugye te is tudod, milyen fontos az ellenőrzés? Az eredeti egyenletbe helyettesítjük mindkét gyököt. Megszámoltad, hány valós gyököt kapunk?
Az előző feladatban egy kicsit nehézkes volt a szorzattá alakítás módszerét alkalmazni, ezért jó lenne valamilyen képlet, amelyet felhasználhatunk. A feladathoz hasonlóan az általános egyenletet is megoldhatjuk. Ha a másodfokú egyenlet ax négyzet meg bx meg c egyenlő nulla alakú, és van megoldása, akkor az egyenlet gyökei, azaz megoldásai kiszámíthatóak az együtthatók segítségével az x egy, kettő egyenlő mínusz b, plusz-mínusz gyök alatt b négyzet mínusz 4 ac per kettő a képlet segítségével. Ez a másodfokú egyenlet megoldóképlete.
Nézzük meg, hogyan kell alkalmazni a képletet másodfokú egyenletekre! Nagyon figyelj arra, hogy az egyenlet mindig nullára legyen rendezve! Ezután az együtthatók sorrendjére figyelj! Mindig álljon elöl az x négyzetes tag, aztán az x-es tag, majd a konstans, vagyis a c értéke!
Nézzünk néhány példát a megoldóképletre! Írjuk fel, mennyi a, b és c értéke! Ezután a képlet megfelelő részébe írjuk be, de most már nem a betűket, hanem a számokat! Először a gyök alatti műveletet végezzük el. Figyelj az előjelekre! Láthatod, hogy most is két megoldásunk lesz, ezt jelöljük a plusz-mínusz jellel. Először összeadunk, így kapunk egyet, majd kivonunk, így az eredményünk mínusz hét. Most se felejts el ellenőrizni! Mindkét valós gyök igazzá teszi az egyenletet.
Nézzünk még egy példát! A lépések ugyanazok, először is rendezzük az egyenletet. Ehhez el kell végezni a szorzást. Nagyon figyelj, ha x-et önmagával szorzod, x négyzetet kapsz! Ahhoz, hogy nullára redukáljuk, a mínusz két x-et és a hatot át kell vinnünk a bal oldalra. Eljutottunk a másodfokú egyenlet általános alakjához, kezdhetjük a képletbe való behelyettesítést. Írjuk fel a megoldóképletet, és helyettesítsünk be! Végezzük el a gyök alatt a négyzetre emelést, majd az összevonást, és az eredményből vonjunk gyököt! Figyelj az előjelekre! És újra az ellenőrzés! Csak az eredeti egyenletben szabad ellenőrizned, erre nagyon figyelj!
Összefoglalásképpen ismételjük át a módszereket! Hogyan tudsz másodfokú egyenletet megoldani? Az abszolútérték segítségével 2. Kiemeléssel 3. Szorzattá alakítással 4. Teljes négyzetté alakítással 5. Grafikusan 6. Megoldóképlettel

Ajánlott irodalom

Sokszínű matematika 10, Mozaik Kiadó, 57–66. oldal

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision