Előzetes tudás

Ehhez a tanegységhez ismerned kell a betűk használatát a matematikában, illetve az általános iskolában megtanult hatványozási alapfogalmakat. Tudnod kell, mit nevezünk algebrai kifejezésnek, mi a változó és az együttható. Tudnod kell használni a nevezetes azonosságokat és a szorzattá alakítás módszereit.

Tanulási célok

Ebben a tanegységben megismerkedsz az algebrai tört fogalmával és megtanulod az algebrai törtek egyszerűsítésének módszereit. Megvizsgáljuk az algebrai törtek értelmezési tartományát, és az is kiderül, hogyan kell műveleteket végezni az algebrai törtekkel.

Narráció szövege

Általános iskolában is találkoztál algebrai kifejezésekkel. Betűk vagy változók, számok vagy együtthatók, illetve az alapműveletek együttese, melyeket véges sokszor használunk a kifejezés felírásakor.
A $ - 3{x^4}y$ (ejtsd: mínusz 3 x a negyediken y) egytagú algebrai kifejezés, a fokszáma 5. A $\frac{2}{5}{a^4}{b^2} - 7{a^2}{b^2} + 5a$ (ejtsd: kétötöd a a negyediken b négyzet, mínusz 7 a négyzet b négyzet, plusz 5a) már többtagú algebrai kifejezés, a fokszáma 6. Többtagú kifejezésnél megkeressük azt a tagot, melyben a kitevők összege a legmagasabb, példánkban ez $4 + 2 = 6$.  
Egy algebrai kifejezést akkor nevezünk algebrai törtnek, ha a nevezőben is található változó. Ha a tört nevezőjében nincs változó, egész algebrai kifejezésnek nevezzük.
Ha kiszámoljuk egy kifejezés értékét egy adott valós szám behelyettesítésével, akkor megkapjuk a helyettesítési értékét. Az algebrai egészeknél bármilyen valós számot behelyettesíthetünk, kapunk valós megoldást.
Igaz ez az algebrai törtekre is? Nézzünk néhány közönséges törtet, és döntsük el, melyik nem értelmezhető! Tudod, hogy a 0-val való osztásnak nincs értelme, tehát azok a törtek, melyeknek a nevezője 0, nem értelmezhetők.
Természetesen ugyanez érvényes az algebrai törtekre is. Úgy kell meghatároznunk az értelmezési tartományt, hogy a nevező ne legyen 0. Ha a nevező egytagú, a benne szereplő változóra kötjük ki, hogy ne legyen 0.
Ha a nevező többtagú, meg kell vizsgálnunk alaposabban, milyen kikötéseket tegyünk. Ennél a példánál $3x + 6$ nem lehet 0, tehát átrendezve $x \ne - 2$. Ellenőrizd le! Ha x helyére –2-t (ejtsd: mínusz kettőt) írunk, a nevezőben 0-t kapunk, amiről tudjuk, hogy nem értelmezhető. Értelmezési tartománya a valós számok halmaza, kivéve–2.
Másik többtagú példánknál ${x^2} + y$ (ejtsd: x négyzet plusz y)-t kell vizsgálnunk. Ez a kifejezés akkor 0, ha ${x^2} = - y$, azaz ha x négyzete y ellentettjével egyenlő. Ilyen számpárt többet is találunk.
Milyen műveleteket végezhetünk algebrai törtekkel? Természetesen ugyanazokat, melyeket a közönséges törteknél már megismertél. Ismételjük át ezeket! Összeadni és kivonni közös nevezőre hozással lehet. A közös nevező a számok legkisebb közös többszöröse, első példánkban ez a számok szorzata, másodikban a 48.
Szorzásnál összeszorozzuk a számlálót a számlálóval és a nevezőt a nevezővel. Ha lehet, érdemes egyszerűsíteni.
Osztásnál a változatlan osztandót az osztó reciprokával szorozzuk.
Algebrai törtekkel hasonlóan végezzük a műveleteket. Az értelmezési tartomány megállapításával kezdjük! Mindkét törtnél egyetlen ismeretlen van a nevezőben, az y, ami nem lehet 0. Ha a nevezők egytagúak, a közös nevezőt könnyű megkeresni. Ezután összevonjuk a számlálókat.
Ha a nevezők különbözőek, azonossággal vagy szorzással keresünk közös nevezőt. Mielőtt hozzákezdünk az összevonáshoz, nézzük meg, hol nincs értelmezve. Az a értéke nem lehet sem 1, sem –1, hiszen akkor a nevezőben 0 lenne. Közös nevező a két tag szorzata, melyet akár egyszerűbben is írhatsz, ha felismered az azonosságot.
Osztásnál adjunk értelmezési tartományt, de az osztónál vigyázzunk, mert a reciprok miatt a számláló sem lehet nulla! Ha lehet, egyszerűsítsük a törtet! A törtet nem értelmezzük a egyenlő –4, 4 és 6 esetén.
Törtek osztásánál az osztó reciprokát kell vennünk. A szorzáskor lehet egyszerűsíteni. Felismerjük a nevezetes azonosságot és egy kiemelési szabályt. Ezek alapján a tört értéke $\frac{1}{{2 \cdot \left( {a - 4} \right)}}$. (ejtsd: 1 per kétszer a mínusz 4) Ez a tört tovább már nem egyszerűsíthető.
A következő feladatnál nagyon kell figyelned, hiszen többféle nevezetes azonosságot is alkalmazunk. Ahol tudsz, egyszerűsíts!
Kezdjük az értelmezési tartománnyal: A tört nevezője nem lehet 0, ez mindhárom nevezőre érvényes. Alakítsuk szorzattá a nevezőket. x nem lehet y-nal vagy –y-nal egyenlő.
Mi legyen a közös nevező? Talán megpróbálhatnánk a törteket egyszerűbb alakra hozni. Nézzük csak! Az első és a harmadik törtet egyszerűsítjük $\left( {x + y} \right)$-nal, így a közös nevező $\left( {x + y} \right)$. A számlálóban felbontjuk a zárójelet, összevonunk, így a tört értéke. $\frac{{3xy}}{{x + y}}$ (ejtsd: 3xy per x + y)
Az algebrai törtek gyakran előfordulnak a matematikában, de a fizikában vagy a kémiában is. Sokat kell gyakorolnod, hogy pontosan, hiba nélkül tudj velük dolgozni!

Ajánlott irodalom

Sokszínű matematika 9, Mozaik Kiadó, 56–61. oldal

Sok kidolgozott, megoldott példát találsz itt:

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision