Tanulási célok

A tanegység elsajátítása után grafikusan meg tudsz oldani különböző egyenleteket.

Narráció szövege

Ha megismerkedtél a legfontosabb első és másodfokú függvényekkel, ismered a képüket, a főbb tulajdonságaikat, a felhasználási módjaikat, vizsgáljuk meg, mire lehet még alkalmazni őket! Amikor egy egyenlet vagy egyenletrendszer megoldását keressük, akkor azokat az értékeket keressük, amelyek behelyettesítés után igazzá teszik az egyenletet vagy az egyenletrendszert. Számos esetben az ilyen egyenlet, egyenletrendszer magoldása szemléletesebb, ha grafikus megoldást alkalmazunk. Ekkor az egyenlet jobb és bal oldalát egy-egy függvénynek tekintjük, közös koordináta-rendszerben ábrázoljuk, majd a metszéspontok első koordinátáját leolvasva megkapjuk az egyenlet vagy egyenletrendszer megoldásait.
Egy vonat $60{\rm{ }}\frac{{km}}{h}$ (hatvan kilométer per óra) átlagsebességgel halad. Mikor éri utol a vonatot az egy órával később, ugyanabból a városból utána induló, $80{\rm{ }}\frac{{km}}{h}$ átlagsebességgel haladó személyautó? Az egyenletes sebességek miatt mindkét jármű megtett útja az $s = v \cdot t$ (s egyenlő v-szer t) képlettel számolható ki, ahol s a megtett út, v az átlagsebesség, t az út megtételéhez szükséges idő. A vonat esetében ${s_1} = 60 \cdot t$ (s egy egyenlő hatvanszor t), a személyautó esetében ${s_2} = 80 \cdot \left( {t - 1} \right)$ (s kettő egyenlő nyolcvanszor t mínusz 1), mert a személyautó egy órával később indult. Természetesen akkor találkoznak, amikor a megtett útjuk ugyanannyi, azaz ${s_1} = {s_2} = s$ (es egy egyenlő es kettő egyenlő s). Ábrázoljuk a két jármű mozgását közös koordináta rendszerben!
Az ábráról pontosan leolvasható a metszéspont. Ez alapján $t = 4$ óránál lesz azonos a megtett út, amely 240 km mindkét jármű esetén. Ezt a vonat 4, a személyautó pedig 3 óra alatt teszi meg. Ellenőrizzük az eredményünket! ${s_1} = 60 \cdot 4 = 240{\rm{ }}km$, ${s_2} = 80 \cdot 3 = 240{\rm{ }}km$, tehát a megoldásunk helyes.
A továbbiakban az előzőekhez hasonló példákat láthatsz, most már szöveges feladat nélkül. Vizsgáljuk meg, hogy hányféle megoldást várhatunk egy-egy esetben! Oldjuk meg grafikusan a következő egyenleteket! 1. példa: ${x^2} - 3 = \left| x \right| - 1$ (x négyzet mínusz három egyenlő x abszolút érték mínusz egy) Ábrázoljuk az egyenlet két oldalát, mint két függvényt! A grafikonok két pontban metszik egymást, ezért az eredeti egyenletnek is két megoldása van: ${x_1} = \left( { - 2} \right)$ és ${x_2} = 2$. Mindkét gyököt ellenőrizzük. Ha ${x_1} = \left( { - 2} \right)$, akkor ${\left( { - 2} \right)^2} - 3 = \left| { - 2} \right| - 1$, azaz $4 - 3 = 2 - 1$, vagyis $1 = 1$ Ha ${x_2} = 2$ akkor kettő a négyzeten, mínusz három, egyenlő kettő abszolút-érték, mínusz egy azaz $4 - 3 = 2 - 1$, vagyis $1 = 1$ Igaz állításokat kaptunk, tehát mindkét megoldás jó.
2. példa: $\frac{6}{x} = 0,5x + 2$ (hat per x egyenlő nulla egész öt tized x meg kettő). A bal oldalon egy fordított arányosság függvény, a jobb oldalon egy lineáris függvény van. Ábrázoljuk a függvényeket! Most is két metszéspontunk keletkezett: ${x_1} = \left( { - 6} \right)$ és ${x_2} = 2$. Ellenőrizzünk! Ha ${x_1} = \left( { - 6} \right)$, akkor $\frac{6}{{\left( { - 6} \right)}} = 0,5 \cdot \left( { - 6} \right) + 2$ $\left( { - 1} \right) = \left( { - 3} \right) + 2$ $\left( { - 1} \right) = \left( { - 1} \right)$ Ha ${x_2} = 2$, akkor $\frac{6}{2} = 0,5 \cdot 2 + 2$ $3 = 1 + 2$ $3 = 3$ Mindkét megoldás jó.
Végül nézzük a harmadik egyenletet! ${x^2} - 2 = 2x - 5$ A két függvény ábrázolása után azt tapasztaljuk, hogy nincs metszéspontjuk. Grafikus megoldás alkalmazásakor jól látszik, ha egy egyenletnek nincs megoldása.

Ajánlott irodalom

Hajnal Imre – Számadó László – Békéssy Szilvia: Matematika a gimnáziumok számára 11. Nemzeti Tankönyvkiadó, Budapest, 2009.

Borosay Dávid: Algebra a középiskolák számára. Szent István Társulat, Budapest, 1917.

Czapáry Endre: Matematika III. Nemzeti Tankönyvkiadó Rt., Budapest, 1996.

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision