Előzetes tudás

Ehhez a tanegységhez ismerned kell a pozitív egész, 0, negatív egész és racionális kitevőjű hatvány fogalmát, a hatványozás azonosságait, az exponenciális függvényt, a másodfokú egyenlet megoldóképletét.

Tanulási célok

A tanegységből megismered az exponenciális egyenletek típusait, megoldási módszereiket.

Narráció szövege

Sokféle egyenlettel találkoztál már a matematikaórákon: elsőfokú, másodfokú, gyökös, abszolút értékes. Most egy újabb egyenlettípussal ismerkedünk meg.
Oldjuk meg a következő egyenletet: ${5^x} = 125$ (ejtsd: 5 az x-ediken egyenlő 125). Ebben az egyenletben a kitevőt nem ismerjük. A kitevő idegen szóval exponens, innen kapta a nevét az exponenciális egyenlet. Tudjuk, hogy a 125 az 5-nek 3. hatványa, ezért a megoldás $x = 3$. Más megoldás nincs, mert az $f\left( x \right) = {5^x}$ (ejtsd: ef-iksz egyenlő öt az ikszediken) függvény szigorúan monoton növekvő, egy függvényértéket biztosan csak egyszer vesz fel.
A következő egyenlet is hasonló. A 81 a 3-nak 4. hatványa. Az $f\left( x \right) = {3^{1 - 2x}}$ (ejtsd: ef-iksz egyenlő három az egy-mínusz-kétikszediken) függvény szigorúan monoton csökkenő, ezért a kitevők egyenlők. Az eredmény $x = - \frac{3}{2}$. (ejtsd: mínusz három ketted) Ellenőrzésképpen helyettesítsük be az eredményt az eredeti egyenletbe!
Minden exponenciális függvény szigorúan monoton, ezért az ilyen típusú feladatokban a kitevők egyenlősége mindig ebből következik.
4 az x-ediken egyenlő 128. A 128 nem egész kitevőjű hatványa a 4-nek, de van kapcsolat a két szám között. A 4 a 2-nek a 2. hatványa, a 128 pedig a 7. Ha hatványt hatványozunk, összeszorozhatjuk a kitevőket. Innen a szokásos módon folytatjuk: a kitevők egyenlőségét felhasználva megkapjuk az x-et. A megoldás helyességét visszahelyettesítéssel ellenőrizzük.
Oldjuk meg az egyenletet az egész számok halmazán! Ebben a példában minden szám a 2 hatványa. A 8 a kettő 3. hatványa, ezért az $\frac{1}{8}$ a –3. (ejtsd: mínusz harmadik) A 4 a 2 négyzete. A bal oldalon felhasználjuk, hogy azonos alapú hatványok szorzatában összeadhatjuk a kitevőket, a jobb oldalon pedig a hatvány hatványozására vonatkozó azonosságot és a negatív kitevőjű hatvány fogalmát alkalmazzuk. Másodfokú egyenletet kaptunk, melyet a megoldóképlettel oldunk meg. A gyökök egészek, tehát benne vannak az értelmezési tartományban. Az ellenőrzés azt mutatja, hogy mindkét megoldás helyes.
A következő feladathoz új ötletre van szükség, a kitevőket nem lehet egyenlővé tenni. Alkalmazzuk a hatványozás azonosságát, miszerint ha a kitevőben összeg van, azt azonos alapú hatványok szorzataként is írhatjuk. Ezután vonjuk össze a bal oldalt. A ${2^x}$ (ejtsd: 2 az x-ediken) ki is emelhető, hogy világosabb legyen az összevonás. Innen már ismerős a módszer, megegyezik az előző példák megoldásával. Az eredmény helyességét az ellenőrzés igazolja.
A következő feladatot is ezzel a módszerrel oldjuk meg! Ha a hatványkitevő különbség, akkor hatványok hányadosát írhatjuk helyette, ha pedig összeg, akkor szorzatot. 24-szer 5 az 120, 1 ötöd egyenlő 0,2. (ejtsd: 0 egész 2 tized) Mindkét oldalt elosztjuk 123,8-del. (ejtsd: százhuszonhárom egész nyolc tized) A kapott gyök kielégíti az eredeti egyenletet.
Végül egy harmadik feladattípus következik: a másodfokú egyenletre visszavezethető exponenciális egyenlet. Vegyük észre, hogy a ${4^x}$ (ejtsd: négy az ikszediken) a ${2^x}$ négyzete. Vezessünk be egy új változót, a ${2^x}$-t jelöljük y-nal. Az y beírása után másodfokú egyenletet kapunk. Ennek a megoldása még nem a végeredmény, ki kell számolni az x-eket is. Itt felhasználjuk, hogy a számok 0. hatványa egyenlő 1-gyel. A kapott gyökök helyesek.
Ha az egyenletben az ismeretlen a kitevőben van, akkor exponenciális egyenletről beszélünk. Többféle exponenciális egyenlettel találkoztunk. A legegyszerűbbeknek mindkét oldala egytagú. Ezeket úgy alakítjuk át, hogy ugyanannak a számnak a hatványai legyenek mindkét oldalon. Ha az egyik oldal többtagú és a kitevőkben összeg vagy különbség szerepel, a megfelelő hatványazonosságot alkalmazzuk, majd összevonunk, és osztunk a hatvány együtthatójával. A harmadik típusfeladat a másodfokúra visszavezethető exponenciális egyenlet. Ez tartalmaz egy hatványt és egy másik tagban annak a négyzetét. Új változó bevezetésével láthatóvá válik a másodfokú egyenlet. Az exponenciális egyenletek megoldásának utolsó lépése mindig az exponenciális függvény szigorú monotonitásából következik. Ha az alapok és a hatványok egyenlők, akkor a kitevők is.

Ajánlott irodalom

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision