${a^n} \cdot {a^m} = {a^{n + m}}$; $\frac{{{a^n}}}{{{a^m}}} = {a^{n - m}}$; ${\left( {{a^n}} \right)^m} = {a^{n \cdot m}}$; ${\left( {a \cdot b} \right)^n} = {a^n} \cdot {b^n}$; ${\left( {\frac{a}{b}} \right)^n} = \frac{{{a^n}}}{{{b^n}}}$ (a, b > 0; n, m, k tetszőleges valós számok)