Előzetes tudás

Ehhez a tanegységhez ismerned kell a négyzetgyök fogalmát, a négyzetgyökvonás azonosságait, az egész kitevőjű hatvány fogalmát, a hatványozás azonosságait.

Tanulási célok

Ebből a tanegységből megtanulod az n-edik gyök fogalmát, az n-edik gyökvonás azonosságait, illetve látsz néhány egyszerű feladatot is az alkalmazásukra.

Narráció szövege

Idézzük fel a négyzetgyök fogalmát a következő feladat segítségével! Ha egy négyzet oldala 7 cm, mekkora az átlója? A négyzetet az átlója két egybevágó, egyenlő szárú derékszögű háromszögre bontja. Erre felírjuk Pitagorasz tételét. Azt kapjuk, hogy ${d^2} = 98$. A d értékét négyzetgyökvonás segítségével határozzuk meg. A pontos eredmény $\sqrt {98} $ (ejtsd: négyzetgyök alatt 98, vagy csak négyzetgyök 98) vagy 7-szer $\sqrt 2 $. Tizedes tört alakban is megadhatjuk az átló hosszát, akkor kerekítsünk századra!
Az előző példában pozitív számból vontunk gyököt, és az eredmény is pozitív lett, egy szakasz hossza. Ha az a kérdés, hogy mivel egyenlő $\sqrt { - 16} $, mit válaszolsz? Biztosan emlékszel, hogy negatív számnak nincs négyzetgyöke, ezt a számot nem értelmezzük. És mit gondolsz arról az állításról, hogy $\sqrt 16 $ egyenlő –4, mert –4 a négyzeten 16? Természetesen nem így van. A négyzetgyök definíciójában az szerepel, hogy négyzetgyöke csak nemnegatív számoknak van és az eredmény is nemnegatív.
Egy kocka térfogata 216 egység. Mekkora az éle?
Ismerjük a kocka térfogatképletét. A kérdés az, hogy melyik szám köbe 216? A választ köbgyökvonással kapjuk meg. Köbgyök alatt 216 egyenlő 6, a kocka éle tehát 6 egység.
Vizsgáljuk meg, hogy milyen számoknak van köbgyökük. Meg tudod-e mondani például, hogy mivel egyenlő $\sqrt[3]{{ - 8}}$? (ejtsd: köbgyök mínusz nyolc) Melyik az a szám, amelynek a 3. hatványa –8? Ez a –2, tehát köbgyököt negatív számból is lehet vonni, és az eredmény is lehet negatív.
Az eddigiek alapján az n-edik gyök fogalmát kétféleképpen értelmezzük. Páros gyökkitevő esetén a definíció hasonló lesz a négyzetgyök, páratlan gyökkitevő esetén a köbgyök definíciójához.
Ha n pozitív páros szám, azaz $n = 2k$ alakú, akkor az a nemnegatív valós szám 2k-adik gyöke olyan nemnegatív szám, amelynek 2k-adik hatványa az a szám.
Ha n pozitív páratlan szám, azaz $n = 2k + 1$ alakú, akkor az a valós szám $\left( {2k + 1} \right)$-edik gyöke olyan szám, amelynek $\left( {2k + 1} \right)$-edik hatványa a.
Nézzünk néhány példát! A definíció alapján számítsuk ki a következő gyököket! Ötödik gyök alatt –32 egyenlő –2, mert –2 az ötödiken egyenlő –32. Plusz 32-nek plusz 2 az ötödik gyöke. Nyolcadik gyököt negatív számból nem lehet vonni. $\sqrt[6]{{729 = 3}}$, mert ${3^6} = 729$. $\sqrt[3]{{125 = 5}}$, mert ${5^3} = 125$.
Számoljuk ki számológéppel a $\sqrt[7]{{20}}$ értékét század pontossággal! A számológépek kétféleképpen végzik el ezt a műveletet. Az egyik esetben először a 7-et, aztán az x-edik gyököt, végül a húszat írjuk be. A másiknál először a 20-at, aztán az x-edik gyököt, végül a 7-et. Az x-edik gyök művelet az x-edik hatvány billentyű másodlagos funkciója. A kapott szám kerekítve 1,53.
A hatványozásnak és a négyzetgyökvonásnak ismerjük az azonosságait. Nézzük meg, milyen tulajdonságai vannak az n-edik gyökvonásnak! $\sqrt[4]{{16 \cdot 625}}$ (ejtsd: negyedik gyök alatt 16-szor 625) számológéppel kiszámolható, az eredmény éppen 10. Ha először meghatározzuk a tényezők 4. gyökét és ezeket összeszorozzuk, akkor is 10-et kapunk.
Tapasztalatunkat általánosíthatjuk: szorzatból tényezőnként is vonhatunk gyököt. Vannak további azonosságok, amelyekre szükséged lehet a feladatok megoldása során. Hányadosból tényezőnként is lehet gyököt vonni. Ha gyökből gyököt vonunk, akkor összeszorozhatjuk a gyökkitevőket. A hatványozás és a gyökvonás sorrendje felcserélhető. Ha hatványból vonunk gyököt, akkor a hatványkitevőt és a gyökkitevőt is megszorozhatjuk ugyanazzal a pozitív egész számmal. Az azonosságok akkor érvényesek, ha a bennük szereplő betűkre teljesülnek a felsorolt feltételek.
Végezzük el a következő műveleteket! Alkalmazhatjuk a szorzat gyökére vonatkozó azonosságot. A 0,001 (ejtsd: 0 egész 1 ezred) köbgyöke könnyebben meghatározható, ha tört alakban írjuk, majd alkalmazzuk a 2. azonosságot. Itt is a 2. azonosságot használjuk fel, az eredmény 3 ketted. Ötödik gyöke negatív számnak is van: –1 harmadot kapunk. Ha gyökből vonunk gyököt, összeszorozzuk a gyökkitevőket. Ha a szorzat vagy hányados tényezőinek különböző a gyökkitevője, akkor közös gyök alá visszük azokat az utolsó azonosság felhasználásával. Ugyanezt az azonosságot alkalmazhatjuk fordítva is: a gyökkitevőt és a hatványkitevőt elosztjuk ugyanazzal a számmal. Ismét közös gyököt keresünk, ez most a 6 lesz. Amennyivel szorozzuk a gyökkitevőt, ugyanannyival kell szoroznunk a hatványkitevőt is.
A gyökvonás a hatványozás egyik inverz (fordított) művelete, alkalmazásuk is együtt valósul meg. A gyökös kifejezések átalakítása során a hatványozásra vonatkozó ismereteidre is szükség van.

Ajánlott irodalom

A Sulinet Tudásbázisban áttanulmányozhatod ezt a témakört és találsz kidolgozott feladatokat is.

tudasbazis.sulinet.hu/hu/matematika/matematika/matematika-10-osztaly/negyzetgyokvonas-n-edik-gyokvonas/az-n-edik-gyok

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision