Előzetes tudás

Ehhez a tanegységhez tudnod kell számegyenesen intervallumokat ábrázolni, két intervallum metszetét képezni, elsőfokú egyenlőtlenségeket és másodfokú egyenletet megoldani, másodfokú függvényt ábrázolni és értelmezni.

Tanulási célok

Ebből a tanegységből megtudod, milyen módszerekkel oldhatsz meg másodfokú egyenlőtlenségeket.

Narráció szövege

A másodfokú egyenlőségek megoldására több módszer is létezik. Korábban az egyenletek gyökeihez algebrai úton, úgynevezett mérlegelvvel vagy szorzattá alakítással, illetve – függvénytani ismeretek felhasználásával – grafikus módon is el lehetett jutni. Az egyenlőtlenségeknél sincs ez másképp, csupán valamivel figyelmesebbnek kell lenni. Nézzük ezeket ugyanazon példán keresztül!
Adjuk meg, mely valós számokra teljesül az \({x^2} - 4 < 0\) (ejtsd: x négyzet mínusz 4 kisebb, mint 0) egyenlőtlenség! Oldjuk meg mérlegelv segítségével a példát! Rendezzük az egyenlőtlenséget, adjunk hozzá mindkét oldalhoz 4-et, majd vonjunk négyzetgyököt mindkét oldalból! Ekkor a bal oldalon az x abszolút értékét, míg a jobb oldalon plusz kettőt kapunk, azaz egy egyszerűbb abszolút értékes egyenlőtlenséghez jutottunk. Az x abszolút értéke akkor lehet kisebb, mint 2, ha az x maga kisebb 2-nél, de nagyobb –2-nél. Tehát a megoldásunk a –2-nél nagyobb, de 2-nél kisebb valós számok halmaza.
Oldjuk meg a példát grafikusan! Az \({x^2} - 4 < 0\) egyenlőtlenség bal oldalán egy másodfokú kifejezés, míg a jobb oldalán 0 szerepel. A függvénytan nyelvére lefordítva a feladat az, hogy meghatározzuk azokat a valós számokat, melyekhez az \(x \mapsto {x^2} - 4\) függvény 0-nál kisebb, azaz negatív értékeket rendel. Ábrázoljuk a függvény grafikonját, és olvassuk le a megoldást! A függvény képe egy felfelé nyitott parabola, mely az x tengelyt a –2 és 2 pontokban metszi. Ezt úgy is mondhatjuk, hogy a függvény zérushelyei a 2 és a –2. Az ezek közötti tartományban a függvény képe az x tengely alatt van, azaz negatív értékeket vesz fel. Ebből következően a megoldás a –2; 2 nyílt intervallum.
Oldjuk meg az egyenlőtlenséget szorzattá alakítással! Az \({x^2} - 4\) kifejezésben felismerhetjük a két négyzet különbsége nevezetes azonosságot, melynek segítségével \(\left( {x + 2} \right) \cdot \left( {x - 2} \right)\) (ejtsd: x plusz kettőször x mínusz kettő) alakra hozható. Olyan valós számokat keresünk, melyeket x helyére helyettesítve a szorzat értéke negatív lesz. Egy kéttényezős szorzat viszont akkor és csak akkor lehet negatív, ha a szorzótényezők – azaz az $x + 2$illetve az $x + -2$ – ellentétes előjelűek. Ez kétféleképpen teljesülhet, ezért két esetet különböztetünk meg. Első esetnek vegyük azt, amikor az $x + 2$ pozitív és az $x - 2$negatív, második esetnek pedig azt, amikor az $x + 2$ negatív és az $x - 2$ pozitív. Rendezzük az első esetben kapott egyenlőtlenségeket x-re! Ne feledjük, ha negatív számmal szorzunk vagy osztunk, a relációs jel megfordul! A kapott eredményeket ábrázoljuk közös számegyenesen! Mivel a két feltételnek egyszerre kell teljesülnie, az ezeknek megfelelő intervallumok (félegyenesek) metszetét kell választanunk. Az első eset tehát akkor teljesül, ha az x nagyobb –2-nél, de kisebb 2-nél. A második esetben kapott egyenlőtlenségeket megoldva és számegyenesen ábrázolva a két intervallumnak (félegyenesnek) nincs metszete, ezért a második eset nem vezet megoldásra. A feladat megoldása tehát a –2 és 2 közé eső valós számok halmaza. Mindhárom módszer ismerete hasznos. Hogy mikor melyiket érdemes használni, az egyrészt a feladattól függ, másrészt lehet egyéni szimpátia kérdése is.
Vegyük a következő példát! \( - {(x + 1)^2} + 3 \le x + 2\) (ejtsd: mínusz x plusz 1 a négyzeten plusz 3 kisebb vagy egyenlő, mint x plusz 2). Próbálkozzunk a grafikus módszerrel! A relációs jel két oldalán álló kifejezéseket akár rögtön ábrázolhatnánk közös koordináta-rendszerben, viszont fennáll a veszély, hogy az esetleges metszéspontok nem rácspontra esnek, ami megnehezítheti a megoldást. Helyette végezzük el a műveleteket, és rendezzük 0-ra az egyenlőtlenséget! Mivel a másodfokú tag együtthatója negatív, a parabola lefelé nyitott. A függvény zérushelyei a másodfokú kifejezés gyökeiként adhatók meg. Használjuk a megoldóképletet, melyből a függvény zérushelyeire 0 és –3 adódik. Készítsük el a függvény grafikonját, majd jelöljük az x tengely azon részét, melyhez tartozó függvényértékek kisebbek, mint 0! A grafikonról leolvashatjuk, hogy az egyenlőtlenség megoldását azok a valós számok adják, melyek kisebbek, mint –3, vagy nagyobbak, mint 0.

Ajánlott irodalom

Sokszínű matematika 10., Mozaik Kiadó, 78. oldal

Matematika 10. osztály, Maxim Kiadó, 67. oldal

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision