Előzetes tudás

Ehhez a tananyaghoz ismerned kell a másodfokú egyenlet megoldásának módszereit, a másodfokú egyenlet megoldóképletét, az egyenletrendezés lépéseit.

Tanulási célok

Ez a tanegység segít neked abban, hogy meg tudj oldani olyan gyakorlati problémákat, amelyeket másodfokú egyenletekre vezetünk vissza.

Narráció szövege

Gyakran találkozhatsz olyan problémákkal tanulmányaid során, melyeket egyenletekkel tudsz megoldani. Gondolj csak fizikai, kémiai számításokra, de akár geometriai feladatoknál is szükséged lehet egyenlet felírására. Ebben a videóban olyan szöveges feladatokkal találkozhatsz, amelyeket másodfokú egyenletekkel lehet a legbiztosabban megoldani. Ehhez ismételjük át a másodfokú egyenlet megoldóképletét!
A szöveges feladatokat típusokba tudjuk sorolni, ezekre gyakran képletet is adunk, ami megkönnyíti a megoldást. Máskor egyenletet kell felállítanunk az ismeretlenek segítségével.
Jöjjenek a példák! Az iskolátokban focibajnokságot szerveznek. Az első fordulóban minden csapat játszik minden csapattal, így összesen ötvenöt mérkőzésre kerül sor. Próbáld meg kiszámolni, hány csapat vett részt ebben a bajnokságban! Először is el kell neveznünk az ismeretlent x-nek. Ekkor a csapatok számát, x-et szorozni kell $\left( {x - 1} \right)$-gyel, hiszen saját magával nem játszik egyik csapat sem. Az eredményt osztani kell kettővel, mert minden meccset kétszer számoltunk. Jöhet az egyenlet rendezése: beszorzás kettővel, zárójelfelbontás, majd rendezés nullára. Behelyettesítünk a megoldóképletbe. Megkaptuk a két valós gyököt, de negatív számú csapat nincs, így az eredmény tizenegy.
Egy másik típusú példát szintén próbáljunk meg egyenlettel felírni! Peti nyári kötelező olvasmánya négyszázötven oldal. Eltervezi, hogy minden nap ugyanannyi oldalt olvas el. Az eredetileg eltervezetthez képest azonban naponta öt oldallal többet sikerült teljesítenie, emiatt három nappal hamarabb végzett a könyvvel. Mi volt vajon az eredeti terve? Az eredetileg tervezett oldalak számát jelölje x, ehhez képest x plusz ötöt olvasott el. Ekkor a napok száma négyszázötven per x és négyszázötven per x plusz öt. A második szám (a megvalósult napok száma) hárommal kevesebb. Ahhoz, hogy egyenlőséget kapjunk, a kisebb értéket meg kell növelnünk hárommal, így az egyenletünk a következő: Ezt kell most közös nevezőre hoznunk, beszoroznunk és nullára rendeznünk. Újra jön a megoldóképlet. Ismét kaptunk egy negatív gyököt, ami nem lehet megoldás, tehát az oldalak száma az eredetileg tervezett huszonöt helyett harminc lett, így a napok száma tizennyolcról tizenötre csökkent. Ne felejts el ellenőrizni és szövegesen válaszolni!
Karcsi bácsi kertjének területe hétszáz négyzetméter. Vajon hány méteresek a kert oldalai? Tudjuk, hogy a kert egyik oldala három méterrel hosszabb, mint a másik. Mit nevezzünk el x-nek? A kert egyik oldalát. Akkor a másik oldala $x - 3$ méter lesz. Egyenletünket a terület képlete adja. Felbontjuk a zárójelet, nullára rendezünk, és jön a jól ismert megoldóképlet. Tehát a kert egyik oldala huszonnyolc, a másik huszonöt méter. Ellenőrizni a területképlettel lehet.
Gondolkozz el: vajon minden hétszáz négyzetméter területű kertnek ugyanakkora a kerülete? Természetesen nem. Vajon milyen alakú az a kert, ahol a kerület a legkisebb lesz? Négyzet alakú, vagyis ahol az oldalak éppen egyenlők.
Nézzünk egy mozgásos feladatot! Két hajó egy kikötőből egyszerre indul el. Egyikük észak, másikuk nyugat felé tart. Négy óra múlva 200 km távolságban lesznek egymástól. Tudjuk, hogy a nyugat felé tartó hajó sebessége tíz kilométer per órával több, mint a másiké. Mekkora sebességgel haladnak a hajók?
Az ábra segít a megoldásban! A derékszögű háromszögről eszünkbe jut Pitagorasz tétele, illetve tudnunk kell az út-idő-sebesség összefüggést is. A hajók által megtett utak egy derékszögű háromszög befogóin helyezkednek el, így az egyenletünk: négy v a négyzeten meg négyszer v plusz 10 a négyzeten egyenlő 200 a négyzetennel.
Bontsuk fel a zárójeleket és emeljünk négyzetre tagonként. Megkapjuk a másodfokú egyenletet. Behelyettesítünk a megoldóképletbe. Egy megoldást kapunk, a 30 kilométer per órát. A negatív értéknek itt sincs értelme. A szöveg segítségével ellenőrzünk. Az észak felé haladó hajó négy óra alatt megtett 120 km-t, a nyugat felé haladó 160 km-t, így 120 a négyzeten meg 160 a négyzeten egyenlő negyvenezerrel, ami a 200-nak a négyzete.
Végezetül egy érdekes kérdés, amely már az ókoriakat is foglalkoztatta, s mind az építészetben, mind a művészetekben, a természetben, a fényképezésben, de még az emberi testen is fellelhető szimmetriáról szól. Ez pedig az aranymetszés. Az aranymetszés egy szakaszt úgy bont két részre, hogy a kisebbik rész úgy aránylik a nagyobbhoz, mint a nagy az egészhez. Sokan úgy vélik, hogy ez a legszebb és legtökéletesebb arány a világon, rengeteg művész munkájában fellelheted. Bizony a szerkesztése is nagyon érdekes! Az aranymetszési állandó x és y aránya, ami megközelítőleg egy egész hatszáztizennyolc ezred, irracionális szám.

Ajánlott irodalom

Sokszínű matematika, Mozaik Kiadó, 103–106. oldal

Ha szeretnél többet tudni a másodfokú egyenletekről, illetve több példát megnézni a szöveges feladatokra:

Ha többet szeretnél tudni az aranymetszésről, az alábbi könyvet olvasd el:

Falus Róbert: Az aranymetszés legendája, Magyar Könyvklub, Budapest, 2001

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision