Előzetes tudás
Tanulási célok
Narráció szövege
A másodfokú egyenlőségek megoldására több módszer is létezik. Korábban az egyenletek gyökeihez algebrai úton, úgynevezett mérlegelvvel vagy szorzattá alakítással, illetve – függvénytani ismeretek felhasználásával – grafikus módon is el lehetett jutni. Az egyenlőtlenségeknél sincs ez másképp, csupán valamivel figyelmesebbnek kell lenni. Nézzük ezeket ugyanazon példán keresztül!
Adjuk meg, mely valós számokra teljesül az \({x^2} - 4 < 0\) (ejtsd: x négyzet mínusz 4 kisebb, mint 0) egyenlőtlenség! Oldjuk meg mérlegelv segítségével a példát! Rendezzük az egyenlőtlenséget, adjunk hozzá mindkét oldalhoz 4-et, majd vonjunk négyzetgyököt mindkét oldalból! Ekkor a bal oldalon az x abszolút értékét, míg a jobb oldalon plusz kettőt kapunk, azaz egy egyszerűbb abszolút értékes egyenlőtlenséghez jutottunk. Az x abszolút értéke akkor lehet kisebb, mint 2, ha az x maga kisebb 2-nél, de nagyobb –2-nél. Tehát a megoldásunk a –2-nél nagyobb, de 2-nél kisebb valós számok halmaza.
Oldjuk meg a példát grafikusan! Az \({x^2} - 4 < 0\) egyenlőtlenség bal oldalán egy másodfokú kifejezés, míg a jobb oldalán 0 szerepel. A függvénytan nyelvére lefordítva a feladat az, hogy meghatározzuk azokat a valós számokat, melyekhez az \(x \mapsto {x^2} - 4\) függvény 0-nál kisebb, azaz negatív értékeket rendel. Ábrázoljuk a függvény grafikonját, és olvassuk le a megoldást! A függvény képe egy felfelé nyitott parabola, mely az x tengelyt a –2 és 2 pontokban metszi. Ezt úgy is mondhatjuk, hogy a függvény zérushelyei a 2 és a –2. Az ezek közötti tartományban a függvény képe az x tengely alatt van, azaz negatív értékeket vesz fel. Ebből következően a megoldás a –2; 2 nyílt intervallum.
Oldjuk meg az egyenlőtlenséget szorzattá alakítással! Az \({x^2} - 4\) kifejezésben felismerhetjük a két négyzet különbsége nevezetes azonosságot, melynek segítségével \(\left( {x + 2} \right) \cdot \left( {x - 2} \right)\) (ejtsd: x plusz kettőször x mínusz kettő) alakra hozható. Olyan valós számokat keresünk, melyeket x helyére helyettesítve a szorzat értéke negatív lesz. Egy kéttényezős szorzat viszont akkor és csak akkor lehet negatív, ha a szorzótényezők – azaz az $x + 2$illetve az $x + -2$ – ellentétes előjelűek. Ez kétféleképpen teljesülhet, ezért két esetet különböztetünk meg. Első esetnek vegyük azt, amikor az $x + 2$ pozitív és az $x - 2$negatív, második esetnek pedig azt, amikor az $x + 2$ negatív és az $x - 2$ pozitív. Rendezzük az első esetben kapott egyenlőtlenségeket x-re! Ne feledjük, ha negatív számmal szorzunk vagy osztunk, a relációs jel megfordul! A kapott eredményeket ábrázoljuk közös számegyenesen! Mivel a két feltételnek egyszerre kell teljesülnie, az ezeknek megfelelő intervallumok (félegyenesek) metszetét kell választanunk. Az első eset tehát akkor teljesül, ha az x nagyobb –2-nél, de kisebb 2-nél. A második esetben kapott egyenlőtlenségeket megoldva és számegyenesen ábrázolva a két intervallumnak (félegyenesnek) nincs metszete, ezért a második eset nem vezet megoldásra. A feladat megoldása tehát a –2 és 2 közé eső valós számok halmaza. Mindhárom módszer ismerete hasznos. Hogy mikor melyiket érdemes használni, az egyrészt a feladattól függ, másrészt lehet egyéni szimpátia kérdése is.
Vegyük a következő példát! \( - {(x + 1)^2} + 3 \le x + 2\) (ejtsd: mínusz x plusz 1 a négyzeten plusz 3 kisebb vagy egyenlő, mint x plusz 2). Próbálkozzunk a grafikus módszerrel! A relációs jel két oldalán álló kifejezéseket akár rögtön ábrázolhatnánk közös koordináta-rendszerben, viszont fennáll a veszély, hogy az esetleges metszéspontok nem rácspontra esnek, ami megnehezítheti a megoldást. Helyette végezzük el a műveleteket, és rendezzük 0-ra az egyenlőtlenséget! Mivel a másodfokú tag együtthatója negatív, a parabola lefelé nyitott. A függvény zérushelyei a másodfokú kifejezés gyökeiként adhatók meg. Használjuk a megoldóképletet, melyből a függvény zérushelyeire 0 és –3 adódik. Készítsük el a függvény grafikonját, majd jelöljük az x tengely azon részét, melyhez tartozó függvényértékek kisebbek, mint 0! A grafikonról leolvashatjuk, hogy az egyenlőtlenség megoldását azok a valós számok adják, melyek kisebbek, mint –3, vagy nagyobbak, mint 0.
Kapcsolódó fogalmak
Ajánlott irodalom
Sokszínű matematika 10., Mozaik Kiadó, 78. oldal
Matematika 10. osztály, Maxim Kiadó, 67. oldal