Előzetes tudás
Tanulási célok
Narráció szövege
A számfogalom kialakulásának kezdete az ősidőkre tehető, s ahogy fejlődött az emberek gondolkodása, úgy bővültek a számokkal kapcsolatos ismeretek is. Ebben a videóban megismerkedhetsz a számhalmazokkal, azok tulajdonságaival, illetve ábrázolási módjával.
Az elsőként megismert számok a természetes számok voltak. Természetes szám a nulla és minden pozitív egész szám. A természetes számok halmazának jele N. Tapasztalhatod, hogy ha két természetes számot összeadsz vagy összeszorzol, az eredmény nem vezet ki a számhalmazból. Igaz az is, hogy összeadásnál a tagok, szorzásnál a tényezők sorrendje felcserélhető. Azt mondjuk, hogy az összeadás és a szorzás kommutatív művelet. Igaz továbbá az is, hogy ez a két művelet asszociatív, vagyis a tagok, illetve a tényezők tetszőlegesen csoportosíthatók.
A két műveletre együtt jellemző a széttagolhatóság vagy más néven disztributivitás.
Az egész számok halmaza tartalmazza a természetes számokat, valamint a negatív egészeket is. Jele: Z. Megjelenik egy újabb művelet, amely nem vezet ki ebből a számhalmazból, a kivonás. A kivonás nem kommutatív és nem is asszociatív művelet.
Tudjuk, hogy egész számból és természetes számból is végtelen sok van, és az egész számoknak részhalmaza a természetes számok halmaza. De vajon melyik számossága a nagyobb?
Belátható, hogy a természetes számok és az egész számok halmazának számossága egyenlő. Ezt nevezzük megszámlálhatóan végtelen számosságnak.
Ezzel a tulajdonsággal rendelkezik még egy további számhalmaz is, a racionális számok halmaza. Jele a Q, és azok a számok tartoznak ide, melyek felírhatók két egész szám hányadosaként. Ebben a halmazban az osztás is elvégezhető úgy, hogy az eredmény a számhalmazban marad.
Vajon melyek azok a tizedes törtek, amelyek racionális számokat adnak meg? Nem nehéz belátni, hogy a véges, illetve a végtelen szakaszos tizedes törtek racionálisak, azaz felírhatók két egész szám hányadosaként.
Vannak azonban olyan tizedes törtek, melyeket nem tudunk tört alakban felírni. Ezek a végtelen nem szakaszos tizedes törtek. Ők az irracionális számok. Ilyen szám például a $\sqrt 2 $ vagy a$\pi $. (ejtsd: négyzetgyök kettő vagy a pí) Irracionális számot kapunk akkor is, ha nulla egész után elkezdjük felsorolni a természetes számokat, ugyanis ez a szám egy végtelen nem szakaszos tizedes tört. Az irracionális számhalmaz jele a ${Q^*}$. (ejtsd: kú-csillag)
A racionális és az irracionális számok halmazának uniója a valós számok halmaza. Tanulmányaidban ez a legbővebb számhalmaz.
Megismertük a számhalmazokat, most nézzük meg, milyen kapcsolat van közöttük! Szemléltessük Venn-diagrammal! Már említettük, hogy a természetes, az egész és a racionális számok számossága megszámlálhatóan végtelen, ezzel szemben a valós számok és az irracionális számok megszámlálhatatlanul végtelen számosságúak. Úgy is mondjuk, hogy kontinuum számosságúak.
A különböző számokat, számhalmazokat vagy azok egy részét számegyenesen is tudjuk ábrázolni. Nézzük meg, hogyan! A természetes, egész és racionális számokat nem nehéz megkeresni a számegyenesen.
Mi a helyzet az irracionális számokkal? Találjuk meg például a $\sqrt 2 $ helyét! (ejtsd: négyzetgyök kettő) Egy egységnyi oldalú négyzetet hívunk segítségül, mert ennek átlója éppen $\sqrt 2 $. (ejtsd: négyzetgyök kettő). Ezt a szakaszt a számegyenesre mérve a $\sqrt 2 $-höz jutunk. Belátható az is, hogy a valós számok kitöltik a számegyenes összes helyét.
A számegyeneshez szorosan kapcsolódik a nyílt és zárt intervallum fogalma. A $\left] { - 4,3} \right[$ nyílt intervallum jelenti az összes olyan valós számot, amelyek nagyobbak mínusz négynél és kisebbek háromnál. A $\left[ { - 4,3} \right]$ zárt intervallum jelenti az összes olyan valós számot, amelyek nagyobbak vagy egyenlők, mint mínusz négy és kisebbek vagy egyenlők, mint három. Léteznek egyik oldalról nyílt, a másik oldalról zárt intervallumok is.
Ábrázoljuk ezeket az intervallumokat számegyenesen! x most valós szám. x nagyobb vagy egyenlő, mint három. x kisebb vagy egyenlő, mint mínusz négy. −4 és 3 mindkét irányból nyílt intervallum, ekkor az intervallum végpontjai nem tartoznak a halmazhoz. −4 és 3 mindkét irányból zárt intervallum, ekkor az intervallum végpontjai is benne vannak a halmazban.
Az intervallumokkal ugyanúgy végezhetünk műveleteket, mint más halmazokkal. Vehetjük ezek unióját, metszetét.
Kapcsolódó fogalmak
Ajánlott irodalom
Sokszínű matematika 10, Mozaik Kiadó, 34–38. oldal
Matematika 10, Gondolkodni jó, Műszaki Kiadó, 7–12. oldal
Georg Cantor a halmazelmélet atyja, itt olvashatsz róla bővebben:
Komjáth Péter: Aki a halmazelmélet paradicsomába vezetett: Georg Cantor (1845–1918)