Előzetes tudás
Tanulási célok
Narráció szövege
Püthagorasznak, az i. e. VI. században élt matematikusnak és filozófusnak tulajdonítanak egy ismert tételt. Pedig indiai, görög, kínai és babilóniai matematikusok már ismerték jóval Püthagorasz előtt, a kínaiak bizonyítást is adtak rá. A Pitagorasz-tétel az euklideszi geometria egyik fontos állítása.
Így hangzik: Bármely derékszögű háromszög leghosszabb oldalának, azaz átfogójának a négyzete megegyezik a másik két oldal, vagyis a befogók négyzetösszegével. Sokan csak így ismerik: ${a^2} + {b^2} = {c^2}$ (a négyzet meg bé négyzet egyenlő cé négyzet), ahol a és b a befogók, c pedig az átfogó hossza. A Pitagorasz-tétel másik megfogalmazása a következő: Tetszőleges derékszögű háromszögben a befogók fölé írt négyzetek területeinek összege megegyezik az átfogó fölé írt négyzet területével. A tétel megfordítása is igaz. Ha egy háromszög két oldalhosszának a négyzetösszege egyenlő a harmadik oldal hosszának a négyzetével, akkor a háromszög derékszögű.
A tételt a geometria számtalan területén alkalmazzák. Nélküle már elképzelhetetlen lenne a számolások, szerkesztések megoldása. A továbbiakban ezekre nézünk néhány példát. 1. Egy egyenlőszárú háromszög alapja 10 cm, magassága 12 cm. Számítsuk ki a kerületét és a területét! Nézzük a megoldást! Készítsünk vázlatot, írjuk rá az adatokat: $a = 10{\rm{ }}cm$ $m = 12{\rm{ }}cm$ $T = ?$ $K = ?$ A terület kiszámításhoz a szükséges adatok rendelkezésünkre állnak. A háromszög területe alap szorozva magassággal, osztva kettővel, tehát a háromszög területe 60 négyzetcentiméter. A kerület kiszámítása egyenlőszárú háromszög esetén: $K = a + 2b$ Ehhez ismernünk kell a b oldalt, azaz a szárakat. Ha a háromszög magasságát meghúzzuk, az az alapot merőlegesen felezi, ezáltal két egybevágó, derékszögű háromszöget kapunk, ahol az alap fele, azaz 5 cm az egyik, a magasság a másik befogó, és a keresett b oldal az átfogó. Írjuk fel erre a háromszögre a pitagoraszi összefüggést! Behelyettesítünk, elvégezzük a négyzetre emelést, gyököt vonunk, és megkapjuk, hogy a háromszög szárai 13 cm hosszúak. A kerülete pedig: 36 cm.
A Pitagorasz-tétel nagy segítséget nyújt abban, hogy kiszámítsuk a sokszög alapú egyenes gúlák alapéleinek, oldaléleinek, oldalmagasságainak és testmagasságának a hosszát, mivel a gúlában ezekhez az oldalakhoz és élekhez mindig rendelhetünk derékszögű háromszöget. Így két adat ismeretében ki tudjuk számítani a harmadik oldalt. Ennek segítségével akár a négyzet alapú piramisok méreteit is meg tudjuk határozni. Vegyünk egy ábrát, amelyen a az alapél, b az oldalél, m a gúla testmagassága, ${m_a}$ (em a) a gúla oldallapjának magassága, e pedig az alaplap átlója! Az ábra alapján a képernyőn látható pitagoraszi összefüggések írhatók fel.
Kapcsolódó fogalmak
Ajánlott irodalom
Hajós György: A geometria alapjai. Nemzeti Tankönyvkiadó, Budapest, 1993.
Varga Ottó: A geometria alapjai. Tankönyvkiadó, Budapest, 1964._x000B_