Előzetes tudás
Tanulási célok
Narráció szövege
Egy fizikatanár sorsolással dönti el, ki lesz a három felelő az óra elején. A harminckét fős 11. osztályban négy hiányzó van. Mennyi a valószínűsége, hogy csak egy tanuló felel, mert a másik két kisorsolt diák éppen hiányzik?
Egy esemény valószínűsége a kedvező esetek és az összes eset számának a hányadosa. Az összes eset ebben a példában $\left( {\begin{array}{*{20}{c}} {32}\\ 3 \end{array}} \right)$. A kedvező lehetőségek száma úgy határozható meg, ha a négy hiányzóból kettőt, a teremben ülők közül pedig egy főt választunk ki. A keresett valószínűség 3%.
A binomiális együtthatók (az n alatt a k alakú számok) értékét a tudományos számológépek egy lépésben megadják. Az nCr műveletet keresd meg a kalkulátorodon! Például $\left( {\begin{array}{*{20}{c}} {32}\\ 3 \end{array}} \right)$ a következő gombok megnyomásával számolható ki. Ebben a feladatban két binomiális együttható szorzatát elosztottuk egy harmadikkal. Ezt a hányadost a részeredmények leírása nélkül is kiszámolja a számológéped. A tudományos számológépek nem teljesen egyformák. Lehetőleg ugyanazt a gépet használd mindig! Ismerd meg jól a működését! A használati utasítás segítség lehet, ha valami nem megy.
Egy tálcán tíz mákos és tizenkét lekváros kifli van. Nem lehet látni, hogy melyikben milyen töltelék van. Endre kivesz öt süteményt. Mennyi a valószínűsége, hogy két lekvárosat és három mákosat választott ki?
A kedvező esetek száma két szám szorzata. A tíz mákos kifliből hármat és a tizenkét lekvárosból kettőt vesz ki Endre. Összesen huszonkét sütemény van, amikből ötöt $\left( {\begin{array}{*{20}{c}} {22}\\ 5 \end{array}} \right)$-féleképpen lehet kiválasztani. A valószínűség a kedvező és az összes eset számának a hányadosa. 30% az esélye annak, hogy éppen három mákos és két lekváros süteményt választ ki Endre.
Biztosan látod, hogy ezeknek a feladatoknak a megoldása ugyanazt az elvet követi. A modell neve visszatevés nélküli mintavétel. A következő példából kiderül, miért ezt a nevet kapta.
Egy alkatrészgyárban ötszáz termékből tíz hibás. A minőségellenőrzés során mintát vesznek, kiválasztanak nyolc alkatrészt. Egyszerre veszik ki ezeket, tehát visszatevés nélküli a mintavétel. Határozzuk meg annak a valószínűségét, hogy legalább egy kiválasztott alkatrész hibás!
Lehet 1, 2, 3, 4, 5, 6, 7 vagy 8 alkatrész hibás. Ez nyolc különböző eset. Kiszámoljuk külön-külön a valószínűségeket és a kapott számokat összeadjuk. Ajaj, ez nagyon sok számolás! Ha dolgozatban ilyen feladatot kapsz, nem lesz rá elég idő! Szerencsére van rövidebb megoldás is. A fenti eseteken kívül még egy lehetőség van: amikor minden kiválasztott termék hibátlan. Ez pontosan az ellentettje (komplementere) annak az eseménynek, hogy legalább egy termék hibás. Számoljuk ki a valószínűségét! A négyszázkilencven hibátlan alkatrészből kiválasztunk nyolcat, ez a kedvező esetek száma. Az összes lehetőséget akkor kapjuk meg, ha ötszázból választunk ki nyolcat. 0,85 a valószínűsége annak, hogy a minta hibátlan termékekből áll. Ebből következik, hogy 0,15 valószínűséggel lesz a nyolc kiválasztott alkatrész között legalább egy hibás.
Határozzuk meg, mennyi a valószínűsége az ötös lottón a kettes, hármas, négyes, ötös találatnak!
Kezdjük a kettes találattal! Az öt kihúzott szám közül kettőt eltaláltunk, hármat nem. Ez 987 700 eset. Ezt elosztjuk $\left( {\begin{array}{*{20}{c}} {90}\\ 5 \end{array}} \right)$-tel. Az eredmény lehangoló: 2,25% az esélye a kettes találatnak. A hármas valószínűsége még ennél is kisebb, 0,0008. Tízezer szelvényből átlagosan nyolc szelvényen van három találat. A négyes esélye olyan kicsi, hogy célszerűbb normálalakban felírni.
A normálalakot automatikusan kiírja a számológép, ha olyan kicsi az eredmény, hogy a kijelzőn csak nullák lennének. Ha te magad akarod a szám normálalakját megjeleníteni, akkor a tudományos kijelzést válaszd! A számológépek sokfélék, de mindenképpen az SCI rövidítést keresd! Ha vissza akarsz térni a helyi értékes számokhoz, akkor a NORMAL módot válaszd!
És íme, az öttalálatos valószínűsége! Igen, ennyi. 0 egész 2 százmilliomod. Ha nagy a nyeremény, kicsi az esély, ez minden szerencsejátékban így van.
Ezek a példák segítettek neked felismerni, mikor alkalmazhatod a visszatevés nélküli mintavétel modelljét.
Kapcsolódó fogalmak
Ajánlott irodalom
Mozaik web-tankönyv: Mintavétel visszatevés nélkül, http://www.mozaweb.hu/Lecke-Mate...