Előzetes tudás
Tanulási célok
Narráció szövege
Az egyenletrendszerekkel megoldható problémák során nem csupán elsőfokú egyenletrendszerekre juthatunk, hanem magasabb fokúakra is. Lássunk egy példát! Egy szám egy másiknál 4-gyel nagyobb, és a két szám szorzata 21. Melyik ez a két szám? Jelöljük x-szel a kisebbik, míg y-nal a nagyobbik számot! Ezekkel a jelölésekkel adjuk meg egyenletek formájában a feladatot! Felírható az $y = x + 4$ (ejtsd: y egyenlő x plusz 4) és az $x \cdot y = 21$ (ejtsd: x-szer y egyenlő 21) egyenlet. A két összetartozó egyenlet egy kétismeretlenes másodfokú egyenletrendszert alkot. A cél olyan x; y számpár meghatározása, amely mindkét egyenletet kielégíti. Próbálkozzunk a behelyettesítő módszerrel! Az első egyenlet y-ra van rendezve, így be is helyettesíthetjük a második egyenletbe. Ha felbontjuk a zárójelet, egy másodfokú egyenletre jutunk, melyet 0-ra rendezünk és megoldóképlettel megoldunk. Az x-re kapott megoldások a 3 és a –7. Ha ezeket visszahelyettesítjük például az első egyenletbe, megkapjuk a lehetséges y-okat. Az $x = 3$-hoz az $y = 7$ (ejtsd: x egyenlő 3-hoz az y egyenlő 7) tartozik. Az x-et –7-nek választva a hozzá tartozó y –3-nak adódik. Az egyenletrendszerünknek tehát két számpár a megoldása. Erről visszahelyettesítéssel győződhetünk meg.
Megoldható-e más módszerrel az egyenletrendszer? Lássuk a grafikus módszert! Az első egyenlet egy lineáris függvény grafikonjának egyenlete, egy egyenes. Mivel a II. egyenletben $xy = 21$, ezért $x = 0$ nem lehetséges. Az egyenlet mindkét oldalát x-szel osztva azt kapjuk, hogy $y = \frac{{21}}{x}$ (ejtsd: 21 per x). „Ez egy fordított arányosság," [szünet] "grafikonja egy hiperbola. " A grafikonok ábrázolása és a metszéspontok koordinátáinak pontos leolvasása után megint azt kapjuk, hogy $x = 3$ és $y = 7$, vagy $x = -7$ és $y = -3$.
Oldjunk meg egy másik példát is! A két egyenletben az y együtthatói éppen egymás ellentettjei, ezért érdemes az egyenlő együtthatók módszerével próbálkozni. A két egyenlet összeadásával az y ismeretlen kiesik. Rendezve az egyenletet, négyzetgyökvonás után x-re az 1 és –1 adódik. Ha a kapott értékeket visszahelyettesítjük például a második egyenletbe, kiszámolhatjuk a hozzájuk tartozó y értékeket. Az y értéke mindkét esetben 1. Ezt visszahelyettesítéssel ellenőrizhetjük. A példa behelyettesítő és grafikus módszerrel is megoldható. Érdemes kipróbálni!
Lássunk egy első ránézésre bonyolultnak tűnő feladatot! Mivel algebrai törtekkel állunk szemben mindkét egyenletben, kikötéssel kezdjük a feladat megoldását. Sem az ${x^2}$ (ejtsd: x négyzet), sem az y nem lehet nulla, azaz x és y nem lehet nulla. Próbálkozzunk az egyenlő együtthatók módszerével! A második egyenletet szorozzuk meg kettővel, majd a két egyenletet adjuk össze! Így egyismeretlenes egyenlethez jutottunk, amiből y-ra 1 adódik. Ha ezt visszahelyettesítjük a második egyenletbe, akkor x-re 2 és –2 adódik. Az egyenletrendszer megoldásai tehát az $x = 2$ és $y = 1$, illetve az $x = -2$ és $y = 1$ számpárok. Visszahelyettesítéssel ellenőrizhetünk.
Kapcsolódó fogalmak
Ajánlott irodalom
Matematika 10. osztály, Maxim Kiadó, 92.oldal