Előzetes tudás

Ehhez a tanegységhez a következő ismeretekre lesz szükséged: kétismeretlenes egyenlet megoldáshalmaza ponthalmaz egyenletének fogalma (kör egyenlete) egyenest meghatározó adatok, irányvektor, normálvektor két vektor skaláris szorzata, a skaláris szorzat kifejezése a vektorok koordinátáival helyvektor koordinátái vektorok különbségének koordinátái

Tanulási célok

Ebből a tanegységből megtanulhatod az adott ponton átmenő, adott normálvektorú egyenes egyenletének felírását. A tanegység elvégzése után tudnod kell – felírni az adott ponton átmenő, adott irányvektorú egyenes egyenletét; – felírni a két adott ponton átmenő egyenes egyenletét; – az egyenes egyenletéből kiolvasni az egyenes néhány pontját, az egyenes normálvektorát és irányvektorát; – megadott pontról eldönteni, hogy rajta van-e az adott egyenletű egyenesen.

Narráció szövege

Ha a számítógép-monitoron egy egyenest akarunk rajzoltatni, akkor ismernünk kell azt a kétismeretlenes egyenletet, amelynek alapján a számítógép el tudja dönteni, hogy mely pontokat kell megjelenítenie és melyeket nem.
Az egyenlet megadását mi magunk is el tudjuk végezni, ha tudjuk, hogy melyik egyenesről van szó.
Határozzuk meg annak az e egyenesnek az egyenletét, amely átmegy a P(5; 2) (ejtsd: pé, öt-kettő) ponton és normálvektora az n(2; 3) (ejtsd: en, kettő-három) vektor!
A normálvektor az egyenesre merőleges, tehát a Q pont akkor és csak akkor lehet rajta az e egyenesen, ha a $\overrightarrow {PQ} $ (ejtsd: pé-qu vektor) merőleges a normálvektorra.
Ha a Q pont koordinátái x és y, akkor a $\overrightarrow {PQ} $ (ejtsd: pé-qu) vektort felírhatjuk a pontokba mutató helyvektorok különbségeként.
A normálvektor és a $\overrightarrow {PQ} $ (ejtsd: pé-qu vektor) pontosan akkor merőlegesek, ha a skaláris szorzatuk nulla. Ismerjük a vektorok koordinátáit, tehát a felírt egyenletet más alakban is megadhatjuk.
A zárójelet felbontva és az egyenletet rendezve egy olyan kétismeretlenes egyenletet kapunk, amelyet csak és kizárólag az e egyenes pontjai tesznek igazzá. Ez az egyenlet tehát az e egyenes egyenlete.
Az eljárást tetszőleges pont és adott normálvektor esetén újra elvégezhetnénk, de ez felesleges.
Figyeld meg az előbbi levezetésben kapott egyik egyenletet!
Ebben az egyenletben mindkét oldalon láthatod a normálvektor koordinátáit, a kettőt és a hármat, a jobb oldalon pedig a megadott P pont két koordinátáját, az ötöt és a kettőt.
Ellenőrizzük, hogy a P pont valóban rajta van-e az egyenesen! Ehhez elegendő a koordinátáit behelyettesíteni az egyenletbe.
Ellenőrizzük, hogy a P pont valóban rajta van-e az egyenesen! Ehhez elegendő a koordinátáit behelyettesíteni az egyenletbe.
Tudni szeretnénk, hogy mennyi az egyenes R pontjának első koordinátája, ha a második koordinátája mínusz nyolc. Az R koordinátáit az egyenes egyenletébe helyettesítve olyan összefüggéshez jutunk, amely megadja a választ a kérdésünkre.
Az R pont első koordinátája tehát 20.
Az eddig elmondottakat általánosan is megfogalmazzuk.
Ha adott az egyenes egy pontja és egy normálvektora is, akkor az egyenes egyenlete az ${n_1}x + {n_2}y = {n_1}{x_0} + {n_2}{y_0}$ (ejtsd: en egyszer iksz, plusz en kettőször ipszilon egyenlő en egyszer iksz null, plusz en kettőször ipszilon null) alakban is felírható. A koordináta-rendszerben azok és csak azok a pontok vannak rajta ezen az egyenesen, amelyeknek a koordinátáit az x, illetve az y helyébe helyettesítve igaz egyenlőséget kapunk.
Aki ismeri az egyenes és a kör egyenletét, annak vonalzó és körző van a kezében. Valódi rajzolgatás helyett persze csak egyenleteket kell megadnia. Az egyenleteket a számítógépek is tudják értelmezni, ezért ez kulcs a számítógépes grafikához is.
Joggal vetődik fel a kérdés, hogy ha nem egy normálvektorával adjuk meg a P ponton átmenő egyenest, akkor hogyan írhatjuk fel az egyenletét?
Egy-egy konkrét példán megmutatjuk, hogy nem kell újabb összefüggéseket megtanulnod.
Hogyan írható fel annak az egyenesnek az egyenlete, amelyik átmegy az adott P ponton és ismert az irányvektora is?
Az irányvektor párhuzamos az egyenessel, a normálvektor pedig merőleges az egyenesre, ezért az irányvektorra is merőleges. Nincs más dolgunk, mint egy olyan vektort találni, amelyik merőleges az egyenes irányvektorára. A merőleges vektorok skaláris szorzata nulla, ezért például az öt-kettő vektor merőleges a megadott irányvektorra.
Az egyenes egy pontja és egy normálvektora is adott, ezért az általános összefüggés alapján felírhatjuk az egyenletét is.
Hogyan járjunk el, ha az egyenest két pontjával adtuk meg? Legyen például a két pont a P és a Q.
A $\overrightarrow {PQ} $ (ejtsd: pé-ku vektor) az egyenesnek irányvektora, ennek koordinátáit a pontokba mutató helyvektorok segítségével adhatjuk meg.
Megadjuk az egyenes egy normálvektorát, amely merőleges a $\overrightarrow {PQ} $ (ejtsd: pé-ku) vektorra.
Ha az egyenes általános normálvektoros egyenletébe beírjuk a négy megadott számot, megkapjuk a keresett egyenletet.
Végül ellenőrizzük le, hogy a megadott egyenesen a Q pont is rajta van-e. Helyettesítsük be a koordinátáit az x és az y helyébe. Igaz kijelentést kapunk, tehát a Q pont is rajta van az egyenesen.
Bárhogyan is adjuk meg tehát az egyenest, mindig találunk hozzá egy megfelelő egyenletet. Így aztán egyetlen egyenlet megadásával bármelyik egyenest képesek vagyunk megjeleníteni akár a számítógép képernyőjén is.

Ajánlott irodalom

Dr. Vancsó Ödön (szerk.): Matematika 11., Koordinátageometria fejezet, Műszaki Kiadó

Marosvári–Korányi–Dömel: Matematika 11. – Közel a valósághoz, Koordinátageometria fejezet, NTK

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision