Előzetes tudás
Tanulási célok
Narráció szövege
Pascal nevével gyakran találkozunk: a nyomás mértékegységét róla nevezték el. Maradandót alkotott a matematikában és a fizikában, de készített mechanikus számológépet is. Ebben a videóban a Pascal-háromszöggel ismerkedünk meg.
Hányféleképpen olvasható ki az ábrából a MADRID szó? Ezt a feladatot többféleképpen meg lehet oldani. Elsőként azt a módszert választjuk, hogy megszámoljuk, az egyes betűkhöz hányféleképpen lehet eljutni. Fentről lefelé kell haladni, minden betűtől mehetünk ferdén jobbra vagy balra.
A háromszög minden szélső betűjéhez csak egyféleképpen lehet eljutni. A megmaradt D kétféleképpen érhető el, ahogy a nyilak is mutatják. A két R-et 3-féleképpen közelíthetjük meg, mert vagy onnan jövünk, ahová 1 út vezet, vagy onnan, ahová 2. A megmaradt I-k közül a bal oldalihoz két helyről érkezhetünk, az egyikbe 1, a másikba 3 út vezet, tehát összesen 4-féleképpen juthatunk ide. A középső I-hez $3 + 3 = 6$-féleképpen, a jobb oldalihoz $3 + 1 = 4$-féleképpen érhetünk el. Ezt a gondolatmenetet folytathatjuk: minden betűhöz annyi út vezet, amennyi a fölötte levő két betűhöz együttvéve.
Az így kialakult háromszög utolsó sorában azt jelzik a számok, hogy arra a helyre hány úton lehet eljutni a háromszög tetejéről. Adjuk össze ezeket a számokat! Tehát a Madrid szó 32-féleképpen olvasható ki az ábrából.
Ugyanezt a feladatot oldjuk meg kombinációkkal is! Ahhoz, hogy az M-től eljussunk az utolsó sorig, 5 lépést kell tennünk. Balról az 1. D-hez 1 út vezet, minden szakaszon balra megyünk. A mellette lévőhöz is 5-öt kell lépni, mégpedig 4-et ferdén balra, 1-et ferdén jobbra. 5 lépés közül tehát az egyik jobbra vezet, mindegy, hogy melyik. 5 elemből 1-et $\left( {\begin{array}{*{20}{c}} 5\\ 1 \end{array}} \right)$ (ejtsd:5 alatt az 1) féleképpen lehet kiválasztani. A következő D-hez úgy jutunk el, ha 3-szor balra, 2-szer jobbra lépünk. 5 elemből 2-t kell kiválasztani. Ez 5 elem másodosztályú kombinációja. A lehetőségek száma $\left( {\begin{array}{*{20}{c}} 5\\ 2 \end{array}} \right)$ (ejtsd:5 alatt a 2). Hasonlóan számolunk tovább. Az 1 helyett írhatunk $\left( {\begin{array}{*{20}{c}} 5\\ 0 \end{array}} \right)$-t, illetve $\left( {\begin{array}{*{20}{c}} 5\\ 5 \end{array}} \right)$-öt. Ha összeadjuk az utolsó sorhoz tartozó számokat, ezzel a módszerrel is 32-t. kapunk.
Hasonló módon tudjuk kiszámolni a többi betűhöz vezető utak számát is. A számokból kialakul egy háromszög, amely ugyanazokat a számokat tartalmazza, mint az első megoldás során létrejött háromszög.
Ez a Pascal-háromszög. A benne szereplő számokat binomiális együtthatóknak nevezzük. A sorait megszámozzuk: a legfelső sor a 0., az alatta lévő az 1., stb. A sorokban számozzuk a tagokat, minden sor a 0. elemmel kezdődik. Az n-edik sor k. eleme $\left( {\begin{array}{*{20}{c}} n\\ k \end{array}} \right)$ (n alatt a k).
Több érdekes tulajdonsága van ennek a háromszögnek. Például bármely eleme a két fölötte lévő összege. Emiatt bármeddig tudjuk folytatni a Pascal-háromszöget. Azt is észreveheted, hogy a Pascal-háromszög tengelyesen szimmetrikus. A feladat 2. megoldásából következik, hogy ezek a számok kombinációk számai. Például a 4. sor 2. eleme megadja négy elem másodosztályú kombinációinak a számát, vagy másképpen: egy négyelemű halmaz kételemű részhalmazainak a számát. Ezért aztán, ha összeadjuk a 4. sorban a számokat, megtudjuk, hogy összesen hány részhalmaza van ennek a halmaznak. Az összeg 16, a négyelemű halmaznak 16 részhalmaza van. A feladatban kapott 32 pedig az ötelemű halmaz részhalmazainak a számát jelenti. Ha megnézzük a többi összeget is, látjuk, hogy ezek mind a 2 hatványai. Bebizonyítható, hogy a Pascal-háromszög n. sorában a tagok összege ${2^n}$ (2 az n-ediken).
Felmerül a kérdés: miért binomiális együtthatóknak nevezzük ezeket a számokat? A binom szó azt jelenti, kéttagú. Például az a+b kifejezés egy binom. Vizsgáljuk meg az $a + b$ hatványait! ${\left( {a + b} \right)^0} = 1$ (a plusz b a nulladikon egyenlő 1). ${\left( {a + b} \right)^1} = 1a + 1b$ ( a plusz b az elsőn egyenlő 1 a plusz 1 b). ${\left( {a + b} \right)^2} = 1{a^2} + 2ab + 1{b^2}$ (a plusz b a négyzeten egyenlő 1 a négyzet plusz 2 ab plusz 1 b négyzet). ${\left( {a + b} \right)^3}$ (a plusz b a köbön) is egy tanult azonosság. A Pascal-háromszög n. sorában az ${\left( {a + b} \right)^n}$ (a plusz b az n-ediken) hatvány rendezett polinom alakjának együtthatói szerepelnek. Innen származik a binomiális együttható elnevezés. Ha az ${\left( {a + b} \right)^n}$ hatványt kifejtjük, a binomiális tételt kapjuk.
A binomiális tétel segítségével írjuk összegalakba az ${\left( {a + b} \right)^5}$ hatványt! A Pascal-háromszög 5. sorára van szükségünk, ezek lesznek az együtthatók. Balról jobbra haladva az a-nak 1-gyel csökken, a b-nek 1-gyel nő a kitevője.
Valójában a Pascal-háromszöget a kínai tudósok évszázadokkal Pascal előtt ismerték. Kínában Yang Hui-háromszögnek nevezik.
Kapcsolódó fogalmak
Ajánlott irodalom
Sulinet Tudásbázis, A binominális együttható és tétel, http://tudasbazis.sulinet.hu/hu/...
Csordás Mihály – Kosztolányi József – Kovács István – Pintér Klára – Dr. Urbán János – Vincze István: Sokszínű matematika 11. Mozaik Kiadó, Budapest, 2013.