Előzetes tudás

Ismerned kell a függvény és a számsorozat fogalmát, a pozitív egész kitevőjű hatvány és az n-edik gyök fogalmát, valamint a hatványozás azonosságait.

Tanulási célok

Megismered a mértani sorozat fogalmát. Megtudod, hogyan lehet kiszámítani a mértani sorozat n-edik tagját és első n tagjának az összegét.

Narráció szövege

A sakkjátékot a legenda szerint egy brahmin találta fel, aki az unatkozó rádzsát örvendeztette meg vele. Az uralkodó bőkezű jutalmat ajánlott jótevőjének. A brahmin csak annyit kért, hogy a sakktábla első mezőjére egy búzaszemet tegyenek, a másodikra kettőt, a harmadikra négyet, a negyedikre nyolcat, és így tovább, minden mezőre kétszer annyit, mint az előzőre.
A búzaszemek számai olyan számsorozatot alkotnak, amelyben minden tag az előző elem kétszerese. Azokat a sorozatokat, amelyekben a második tagtól kezdve minden tag az előző elem ugyanannyiszorosa, mértani sorozatnak nevezzük. Azt is mondhatjuk, hogy a mértani sorozatban a szomszédos tagok hányadosa állandó. Ez az állandó a mértani sorozat kvóciense, jele q. A definícióból következik, hogy a mértani sorozatnak egyik eleme sem lehet nulla, mert nullával nem oszthatunk. Emiatt a hányados is nullától különböző szám.
Lássunk néhány példát! Az egy, négy, tizenhat, hatvannégy számok egy olyan mértani sorozat tagjai, amelynek az első eleme egy, a hányadosa négy. A száz, húsz, négy, négy ötöd, négy huszonötöd számok szintén mértani sorozatot alkotnak. Ennek a kvóciense egy ötöd.
Mivel egyenlő annak a mértani sorozatnak a tizedik tagja, amelynek az első tagja három, a kvóciense kettő? A képzési szabály szerint a második tag háromszor kettő, vagyis hat. A harmadik tag hatszor kettő, azaz tizenkettő. Ezt úgy is felírhatjuk, hogy háromszor kettő a négyzeten. Hasonlóan a negyedik tag háromszor kettő a harmadikon, az ötödik háromszor kettő a negyediken. Biztosan látod már a szabályt: a tizedik tag háromszor kettő a kilencediken lesz, vagyis ezerötszázharminchat.
A példa alapján megfogalmazhatjuk a mértani sorozatok egyik fontos képletét: ha ismerjük az első tagot és a kvócienst, bármelyik tag kiszámolható. Az n-nedik tag ${a_1}$-szer q az n mínusz egyediken.
Egy mértani sorozat ötödik tagja húsz, a hányadosa mínusz három. Mennyi az első és a második eleme? Alkalmazzuk az előbbi összefüggést! Behelyettesítünk, majd osztunk nyolcvaneggyel. Az első tag húsz nyolcvanegyed, a második ennek a mínusz háromszorosa, mínusz húsz huszonheted. Ez egy olyan sorozat, amelyben a tagok váltakozó előjelűek.
Módosítsuk úgy a feladatot, hogy az első és az ötödik tagot ismerjük, és a hányadost keressük! Az n-edik tag képletébe behelyettesítünk, majd osztunk kettővel. Melyik szám negyedik hatványa a tíz? Negyedik gyökvonással kapjuk meg a választ. Két megoldásunk van, mert a kapott szám ellentettjének is tíz a negyedik hatványa.
Gyakran találkozol olyan feladatokkal, ahol a mértani sorozat tagjainak összegét kell kiszámolni. Itt van például a búzaszemek száma. A rádzsa hozatott egy zsák búzát, az azonban hamar elfogyott. Hány szem búza kellett volna? Össze kell adni annak a mértani sorozatnak hatvannégy tagját, amelyben az első elem egy, a hányados kettő. Ha a kapott egyenletet megszorozzuk kettővel, majd a második egyenletből kivonjuk az elsőt, megkapjuk a keresett összeget: kettő a hatvannegyediken mínusz egy. Ez egy húszjegyű szám.
Minden olyan mértani sorozat összegét ki lehet számolni hasonlóan, amely nem állandó, tehát a hányadosa egytől különböző. A képlet a következő: ${a_1}$-szer q az n-ediken mínusz egy per q mínusz egy. Ha a hányados egyenlő eggyel, akkor minden tag egyenlő az elsővel, az összeg n-szer ${a_1}$.
Számítsuk ki annak a mértani sorozatnak a hatodik tagját és az első hat tagjának az összegét, amelynek első eleme mínusz kettő, a hányadosa egy egész öt tized! A hatodik tag az n-edik tagra vonatkozó képlettel számolható ki, értéke mínusz tizenöt egész ezernyolcszázhetvenöt tízezred. Az összegképlet alapján s6 mínusz negyvenegy egész ötezer-hatszázhuszonöt tízezred.
Térjünk vissza a bevezető történethez! Ha annyi szem búzát vagonokba raknánk, amennyit a sakk feltalálója kért, akkor a szerelvény elérne a Napig. Természetesen a brahmin kívánságát nem lehetett teljesíteni, összesen, sok ezer év alatt sem termett ennyi búza a Földön.

Ajánlott irodalom

Sulinet Tudásbázis, Mértani sorozat,

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision