Előzetes tudás

Ehhez a tanegységhez ismerned kell a másodfokú egyenlet megoldóképletét és a diszkrimináns jelentését.

Tanulási célok

Ebből a tanegységből megtudod, hogyan lehet másodfokú polinomot szorzattá alakítani, másodfokú egyenleteket gyöktényezős alakban felírni, emellett megismered a másodfokú egyenlet lehetséges gyökei és együtthatói közötti összefüggéseket .

Narráció szövege

A másodfokú egyenlet megoldóképlete bármely másodfokú egyenlet megoldásánál nagy segítséget jelent. Vannak azonban olyan esetek, amelyeknél egyszerűbb megoldás is kínálkozik a gyökök kiszámítására.
Vegyük a $3 \cdot \left( {x - 2} \right) \cdot \left( {x + 1} \right) = 0$ (ejtsd: háromszor x mínusz kettőször x plusz egy egyenlő nulla) egyenletet. A megoldóképlet használatához hozzuk általános alakra. Bontsuk fel a zárójeleket, és végezzük el a lehetséges összevonásokat. A megoldóképlet helyes alkalmazásával megkapjuk a 2 és –1 (ejtsd: kettő és mínusz 1) gyököket. Az eredeti egyenletet kicsit alaposabban megvizsgálva azonban feltűnhet, hogy ennél egyszerűbb megoldás is kínálkozik. Tekintettel arra, hogy a bal oldalon egy szorzat, míg a jobb oldalon nulla szerepel, felhasználhatjuk, hogy egy szorzat akkor és csak akkor nulla, ha valamelyik szorzótényező nulla. Ezt kihasználva csupán az x mínusz kettő egyenlő nulla és az x plusz egy egyenlő nulla egyenleteket kell megoldani, melyekből a már korábban megkapott két gyök adódik.
Az előzőek ismeretében vajon fel tudunk-e írni egy olyan egyenletet, amelynek a megoldásai adottak, például ${x_1} = 1$ és ${x_2} = -5$? (ejtsd: egy és mínusz öt) Természetesen, hisz könnyen felírható két olyan szorzótényező, amelyek gyökei az 1 és a –5. (ejtsd: egy és a mínusz öt). Például az $x - 1$ és az $x + 5$ (ejtsd: az x mínusz egy és az x plusz öt). Ezeket felhasználva felírható a következő egyenlet. Vajon csak egy ilyen egyenlet létezik? Nem, hiszen egy nullától különböző konstans tényezővel bővítve a szorzatot a megoldás menete nem változik, mert a konstans nem lehet nulla. Ebből adódóan végtelen sok ilyen egyenlet írható fel.
A fentiek ismeretében alakítsuk szorzattá a $2{x^2} + 5x - 3$ (ejtsd: kettő x négyzet plusz öt x mínusz 3) másodfokú polinomot! Nem kell mást tennünk, csupán meg kell keresnünk a polinom gyökeit, amihez a következő egyenlet megoldásával juthatunk el. A megoldóképlet használatával kapjuk az $\frac{1}{2}$ és –3 (ejtsd: egyketted és mínusz három) gyököket megoldásul. Ezeket felhasználva az előző feladat mintájára felírható az alábbi szorzat alak. A kérdés, hogy az így kapott szorzat valóban megegyezik-e az eredeti másodfokú polinommal, vagy esetleg szükség van az előző példában tárgyalt konstans szorzótényezőre is? Visszaszorzással ellenőrizve láthatjuk, hogy mindegyik tag együtthatója az eredeti együtthatók fele, így a keresett konstans a kettő. Felmerülhet a kérdés, hogy tetszőleges másodfokú polinom felírható-e szorzat alakban? Minden olyan másodfokú polinom, melynek van valós gyöke, felírható a következő módon szorzatalakban. Abban az esetben, ha a két gyök egybeesik, a fenti képletben szereplő x egy és x kettő helyére is a kapott számot helyettesítjük, hisz ekkor teljes négyzetről beszélhetünk. A képlet segítségével olyan algebrai törteket is képesek vagyunk egyszerűsíteni, amelyekre korábban nem volt lehetőség. Ha egy másodfokú egyenlet általános alakját a fenti módszer alkalmazásával szorzattá alakítjuk, akkor azt az egyenlet gyöktényezős alakjának nevezzük.
A másodfokú egyenletek vizsgálata során François Viète (ejtsd: franszoá viet), a XVI. században élt francia matematikus további összefüggésekre lett figyelmes az egyenlet gyökei és együtthatói között. Bebizonyítható, hogy amennyiben az $a{x^2} + bx + c = 0$ (ejtsd: ax négyzet plusz bx plusz c egyenlő nulla) alakban felírt másodfokú egyenletnek léteznek valós megoldásai, akkor a két gyök összege egyenlő $ - \frac{b}{a}$-val, (ejtsd: egyenlő mínusz b per a-val,) míg a két gyök szorzata $ - \frac{c}{a}$-val. (ejtsd: c per a-val). Az összefüggéseket Viéte-formuláknak (ejtsd: viet-formuláknak) is szokás nevezni. A formulák segítségével lehetőség van másodfokú egyenletek megoldásainak gyors ellenőrzésére, valamint gyökökkel és együtthatókkal kapcsolatos feladatok egyszerű megoldására.
Oldjuk meg a következő példát! Adjuk meg a valós számok halmazán értelmezett ${x^2} + 5x + 6 = 0$ (ejtsd: x négyzet plusz 5x plusz 6 egyenlő 0) egyenlet valós gyökeinek négyzetösszegét a megoldóképlet használata nélkül! A diszkrimináns előjele azt mutatja, hogy az egyenletnek két különböző valós gyöke van. A négyzetösszeg kifejezhető a kéttagú összeg négyzete azonosságból, melybe behelyettesíthetők a Viéte-formulák. Ha elvégezzük a műveleteket, a tizenhármat kapjuk eredményül. Anélkül meg tudtuk tehát adni a gyökök négyzetösszegét, hogy ismertük volna az egyes gyököket.

Ajánlott irodalom

Sokszínű matematika 10., Mozaik Kiadó, 67.oldal

Matematika 10. osztály, Maxim Könyvkiadó, 56., 68. oldal

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision