Előzetes tudás

Ehhez a témakörhöz ismerned kell a derékszögű háromszög jellemzőit, továbbá a tudományos számológép vagy a függvénytábla használatát, a szögfüggvényértékek meghatározásához.

Tanulási célok

Ebben a témakörben megismered a derékszögű háromszög hegyesszögeire vonatkozó négy szögfüggvényt. Segítségükkel meg tudsz majd oldani különböző geometriai számításokat.

Narráció szövege

Trigonometria. Mit jelent? A szóösszetételből sejthetjük, hogy három: „tri” oldalról lehet szó, és ezek valamilyen méréséről. Valóban, a trigonometria a geometriának a szögfüggvényekkel kapcsolatos része. A szó görög eredetű. A legelső ismert trigonometrikus táblázat a nikaiai csillagász, matematikus Hipparkhosztól származik, akit emiatt a „trigonometria atyja”-ként is emlegetnek.
Nézzük meg a derékszögű háromszög oldalai és szögei közötti összefüggéseket! Rajzoljuk fel a háromszöget, ahol a és b a két befogó, c pedig az átfogó! Jelöljük a hegyesszögeket alfával és bétával! Ezek alapján négy összefüggést, azaz négy szögfüggvényt írhatunk fel a háromszög szögeire. Ezek a szinusz, a koszinusz, a tangens és a kotangens szögfüggvények. Írjuk fel őket sorban, a képen látható jelöléseknek megfelelően! $\sin \alpha $-nak (szinusz alfának) nevezzük a szöggel szembeni befogó és az átfogó hányadosát. $\cos \alpha $-nak (koszinusz alfának) nevezzük a szög melletti befogó és azátfogó hányadosát. $tg \alpha $-nak (tangens alfának) nevezzük a szöggel szembeni befogó és a szög melletti befogó hányadosát. $ctg \alpha $-nak (kotangens alfának) nevezzük a szög melletti befogó és a szöggel szembeni befogó hányadosát. Fontos összefüggés, hogy $tg \alpha $ és $ctg \alpha $ egymás reciprokai. Ezért nincs a számológépeken kotangens billentyű. Ha ezeket az összefüggéseket felírjuk a háromszög $\beta $ (béta) szögére is, akkor a következő eredményeket kapjuk: szinusz alfa egyenlő koszinusz béta, koszinusz alfa egyenlő szinusz béta, tangens alfa egyenlő kotangens béta és kotangens alfa egyenlő tangens béta. Ezek az összefüggések a derékszögű háromszögben igazak, mert alfa és béta összege kilencven fok.
Írjuk fel a szögfüggvényeket egy adott háromszögre, ahol az oldalak hossza $a = 8{\rm{ }}cm$, $b = 6{\rm{ }}cm$ és $c = 10{\rm{ }}cm$! A hányadost négy tizedes jegyre kerekítve adjuk meg!
Használjuk ezeket az összefüggéseket feladatokban! Vannak úgynevezett „pitagoraszi számhármasok”, például a 3; 4; 5 vagy az 5; 12; 13. Határozzuk meg olyan derékszögű háromszögeknek a hegyesszögeit, amelyeknek ezek az oldalai! Először írjuk le az adatokat: $a = 3 $ $b = 4 $ $c = 5 $ egység Mivel a háromszög mindhárom oldalát ismerjük, bármelyik szögfüggvényt alkalmazhatjuk. Válasszuk a szinusz szögfüggvényt! Az a és a c helyére helyettesítsük be a megfelelő értékeket, ezután számológép segítségével keressük meg a szöget! Ehhez tudnod kell használni a számológépedet! Ha szöget keresünk vissza, akkor a művelet a „hátsó panelen” van, tehát a gombok megnyomásának sorrendje a következő: „2nd F” „sin” (szekönd ef szinusz) zárójel 3 osztva 5 zárójel bezárva, egyenlő. A számológép ezután kiírja a keresett szöget, amely két tizedesre kerekítve 36,87 (harminchat egész nyolcvanhét század) fok. Lehetséges, hogy a Te számológéped nem ebben a sorrendben működik, ekkor tanulmányozd a használati utasítását! Hasonlóan számolhatjuk ki a háromszög másik hegyesszögét. Szinusz béta egyenlő négy ötöd, amiből béta két tizedesre kerekítve${53,13^ \circ }$ (ötvenhárom egész tizenhárom század fok) Könnyen ellenőrizhetjük a munkánkat, mert a két hegyesszög együtt kilencven fok. Határozzuk meg a másik pitagoraszi háromszög hegyesszögeit is! Most is írjuk ki az adatokat: $a = 5 $ $b = 12 $ $c = 13 $ egység Használjuk a szinusz szögfüggvényt. Szinusz alfa egyenlő a per c, azaz szinusz alfa öt tizenharmad. Ha ezt is a számológép segítségével határozzuk meg, akkor alfára huszonkét egész hatvankét század fokot kapunk. Most ellenőrizzünk a tangens szögfüggvény segítségével! A háromszög másik hegyesszöge 90 fok mínusz huszonkét egész hatvankét század fok, egyenlő 67 egész 38 század fok. És tangens 67 egész 38 század fok egyenlő kerekítve 2,4-del, ami tizenkettő ötöd. Ezek az értékek nem mind racionális számok, ezért a kerekített értékek is helyesek.

Ajánlott irodalom

Hajós György: A geometria alapjai. Nemzeti Tankönyvkiadó, Budapest, 1993.

Varga Ottó: A geometria alapjai. Tankönyvkiadó, Budapest, 1964._x000B_

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision