Előzetes tudás

Ehhez a tanegységhez tudnod kell, mi az esemény, hogyan számítjuk ki a valószínűséget a klasszikus modellben, a kombinatorikából emlékezned kell a kombinációkra, ismerned kell a százalék fogalmát. A számológépeddel ki kell tudnod számolni a binomiális együtthatókat és különböző hatványokat. Jó, ha ismered a kerekítés szabályait.

Tanulási célok

Ebből a tanegységből megismered a visszatevéses mintavétel modelljét. Érdekes, a mindennapi élethez kapcsolódó feladatok megoldását kísérheted figyelemmel.

Narráció szövege

A matematika annak művészete, hogy különböző dolgoknak ugyanazt a nevet adjuk. Poincaré francia matematikus, fizikus és filozófus jellemezte így a matematikát. A következő problémák látszólag nagyon különbözők, a megoldási módjuk mégis ugyanaz. A módszer neve: visszatevéses mintavétel.
Egy autóalkatrész-gyárban száz alkatrészből öt hibás. A minőségellenőrzést úgy végzik, hogy az ellenőr kiválaszt egy alkatrészt, megvizsgálja, majd visszateszi. Ezt megismétli még kétszer. Mekkora a valószínűsége, hogy egy hibás terméket talál?
Ha százból öt alkatrész hibás, akkor 0,05 valószínűséggel választ az ellenőr hibás, 0,95 valószínűséggel jó terméket. Két jót és egy rosszat ebben a sorrendben 0,045 valószínűséggel vehetünk ki. Az is lehet, hogy elsőre vesz ki selejtes terméket. A harmadik lehetőség, hogy a középsőnek kiválasztott alkatrész volt a hibás. A keresett valószínűség tehát 0,135, másképpen 13,5%.
Egy dobozban három piros és hét fehér golyó van. Kihúzunk egyet, megnézzük a színét, majd visszatesszük. Ezt megismételjük még négyszer. Mekkora a valószínűsége annak, hogy kétszer fehéret, háromszor pirosat húzunk?
Fehér golyó húzásának $\frac{7}{{10}}$, piros golyó húzásának $\frac{3}{{10}}$ a valószínűsége. Vegyük először azt az esetet, hogy az első két kihúzott golyó fehér, a többi piros. Ennek a valószínűsége ${0,7^2} \cdot {0,3^3}$.
A kihúzott öt golyó közül a két fehér nem csak az első kettő lehet. $\left( {\begin{array}{*{20}{c}} 5\\ 2 \end{array}} \right)$-féleképpen lehet az öt húzásból kiválasztani azt a kettőt, amikor fehéret húzunk. Ezzel megszorozzuk az előbbi számot. A keresett valószínűség tehát 13%.
A totójátékban focimeccsekre fogadnak a játékosok. Háromféle eredmény lehet: a hazai csapat győz, döntetlen lesz vagy a vendégcsapat győz. Ennek megfelelően a totószelvény minden sorába 1, x vagy 2 kerülhet. Ha véletlenszerűen töltjük ki a 13 mezőt, mennyi a valószínűsége annak, hogy tíz találatunk lesz?
A jó tipp esélye $\frac{1}{{3}}$, a rosszé $\frac{2}{{3}}$. Tíz jó, három rossz választásunk van. Ha az első tíz jó és az utolsó három rossz, ennek a valószínűsége ${\left( {\frac{1}{3}} \right)^{10}} \cdot {\left( {\frac{2}{3}} \right)^3}$. A három hibás választás bármelyik három sorban lehet, ezért a kapott számot meg kell szorozni $\left( {\begin{array}{*{20}{c}} 13\\ 3 \end{array}} \right)$-mal. Az eredményünk azt mutatja, hogy csekély, 0,14% a 10-es találat valószínűsége. A totót általában nem véletlenszerűen töltik ki a játékosok, hanem figyelembe veszik a csapatok egymáshoz viszonyított erősségét.
Három példa után ideje általánosan is megfogalmazni a visszatevéses mintavétel lényegét. Vannak dolgok (golyók, betűk, emberek, bármi, legyen most termék), amikre vagy jellemző egy tulajdonság (például az, hogy hibás), vagy nem. Ismerjük a tulajdonság előfordulásának a valószínűségét. Ezek közül a termékek közül kiválasztunk n darabot visszatevéssel. Azt kérdezzük, mennyi a valószínűsége, hogy a kiválasztottak közül k db hibás. A keresett valószínűséget ezzel a képlettel lehet kiszámolni.
Kati nem készült az informatikadolgozatra. A számonkérés tíz kérdésből áll, négy válasz közül kell kiválasztani az egyetlen helyeset. Kati abban bízik, hogy legalább hét választ eltalál, ennyi kell a hármashoz. Mennyi a valószínűsége, hogy sikerül a terve?
Annak a valószínűsége, hogy valamelyik kérdésre jól válaszol, $\frac{1}{4}$, a rossz válasz esélye $\frac{3}{4}$. Legalább hetet szeretne eltalálni, ez négy lehetőség: 7, 8, 9 vagy 10 helyes válasz a tízből. Menjünk sorban és alkalmazzuk az előbbi képletet! Hét helyes válasz valószínűsége $\left( {\begin{array}{*{20}{c}} {10}\\ 7 \end{array}} \right) \cdot {\left( {\frac{1}{4}} \right)^7} \cdot {\left( {\frac{3}{4}} \right)^3}$. Az eredmény 0,003, másképpen 0,3%. Annak a valószínűsége, hogy nyolc válasz jó, hasonlóan számítható ki. Kilenc helyes válasz esélye ugyanezzel a módszerrel kapható meg. Végül annak a valószínűségét határozzuk meg, hogy mind a tíz választ eltalálja. A kapott valószínűségek összege a válasz a kérdésünkre. 0,34%-ot kaptunk. Ez azt jelenti, hogy ezer teljesen felkészületlen tanulóból átlagosan három, esetleg négy kaphat hármast. Kati valószínűleg csalódni fog.
A visszatevéses mintavétel nemcsak a minőségellenőrök módszere, sokféle probléma megoldására alkalmas. Ha valószínűség-számítási feladatot oldasz meg, gondolj erre a modellre is!

Ajánlott irodalom

Csordás Mihály – Kosztolányi József − Kovács István − Pintér Klára − Dr. Urbán János − Vincze István: Sokszínű Matematika 11., Mozaik Kiadó, 2013, 275–281. oldal

Hajdu Sándor − Czeglédy Zoltán − Hajdu Sándor Zoltán − Kovács András: Matematika 11., Műszaki Kiadó, Budapest, 2009, 351–353. oldal

Teszt 
Javasolt feldolgozási idő: 15 perc
Még nem töltöttem ki a tesztet
Developed by Integral Vision